NH₃, being a basic gas neutralizes the HNO₃ forming a salt NH₄NO₃
Therefore the correct answer is NH₃ and NH₄NO₃
The solution of which only 32% dissociates to release OH⁻ ions is a weak base. This is because some of the energy is used when the substance reacts with the solution thus some bonds are not broken.
HCl is an acid. This is because it dissociates in water to give H⁺ as the only positively charged ions.
Arrhenius acid increases the concentration of hydrogen ions because it dissociates to release hydrogen ions as the only positively charged ions in the acid. So the answer is TRUE
Arrhenius base dissociates in water to release hydroxide ions as the only negatively charged ions.
NaOH⁺aq⇒Na⁺ ₍aq₎+ OH⁻₍aq₎
Answer:
Explanation:
Ketcher 01232019462D 1 1.00000 0.00000 0 5 4 0 0 0 999 V2000 -0.0330 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 2.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 3.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 1.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 2 3 1 0 0 0 2 4 1 0 0 0 3 5 1 0 0 0 M END
Answer:
ν = 7.04 × 10¹³ s⁻¹
λ = 426 nm
It falls in the visible range
Explanation:
The relation between the energy of the radiation and its frequency is given by Planck-Einstein equation:
E = h × ν
where,
E is the energy
h is the Planck constant (6.63 × 10⁻³⁴ J.s)
ν is the frequency
Then, we can find frequency,

Frequency and wavelength are related through the following equation:
c = λ × ν
where,
c is the speed of light (3.00 × 10⁸ m/s)
λ is the wavelength

A 426 nm wavelength falls in the visible range (≈380-740 nm)
Answer:p-hydroxybenzaldehyde is stronger acid to phenol
para-cyanophenol is stronger acid to meta-cyanophenol
o-fluorophenol is stronger acid to p-fluorophenol.
Explanation:
The PKa tool relative to Ph are used to contrast the pairs.
The pKa of phenol is 10. The pKa of p-hydroxybenzaldehyde is 9.24
The pKa for meta-cyanophenol is 8.61 and the pKa for para-cyanophenol is 7.95.
The pKa value of o-fluorophenol is 8.7, while that of the p-fluorophenol is 9.9. It's obvious that the inductive effect is more dominant at ortho-position, which results in a more acidic nature
The pKa is the pH value at which a chemical species will accept or donate a proton. The lower the pKa, the stronger the acid and the greater the ability to donate a proton in aqueous solution.
Explanation:
Using the expression :

Where,
is the dissociation constant of water.
At
, 
Thus, for HCN , 
<u>
for CN⁻ can be calculated as:</u>



Thus, for NH₃ , 
<u>
for
can be calculated as:</u>


