Answer:
D. Ultraviolet light should have a short wavelength, not a long wavelength.
Explanation:
just took the quiz on Ed
Answer:
25.99mL is the volume internal volume of the flask
Explanation:
<em>To complete the question:</em>
<em>The temperature of the water was measured to be 21ºC. Use this data to find the internal volume of the stoppered flask</em>
<em />
The flask was filled with water, that means the internal volume of the flask is equal to the volume that the water occupies.
To find the volume of the water you need to find the mass and by the use of density of water at 21ºC (0.997992g/mL), you can find the volume of the flask, thus:
Mass water = Mass filled flask - Mass of clean flask
Mass water = 60.167g - 34.232g
Mass water = 25.935g of water.
To convert this mass to volume:
25.935g × (1mL / 0.997992g) =
<h3>25.99mL is the volume internal volume of the flask</h3>
Answer: heat required to raise the temperature
Explanation: Heat equation is represented as:

Q= heat required to raise the temperature
m= mass of the substance
c = heat capacity of substance

Its total charge is zero but for the elements:
Sn===> Sn4+ positive
Cl===> Cl- negative
Answer:
-1815.4 kJ/mol
Explanation:
Starting with standard enthalpies of formation you can calculate the standard enthalpy for the reaction doing this simple calculation:
∑ n *ΔH formation (products) - ∑ n *ΔH formation (reagents)
This is possible because enthalpy is state function meaning it only deppends on the initial and final state of the system (That's why is also possible to "mix" reactions with Hess Law to determine the enthalpy of a new reaction). Also the enthalpy of formation is the heat required to form the compound from pure elements, then products are just atoms of reagents organized in a different form.
In this case:
ΔH rxn = [(2 * -1675.7) - (3 * -520.0)] kJ/mol = -1815.4 kJ/mol