Hello!
To determine [H₃O⁺], we need to apply the Henderson-Hasselback equation, since this is a case of an acid and its conjugate base:
![pH=pKa+log( \frac{[A^{-}] }{[HA]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%20%7D%7B%5BHA%5D%7D%20%29)

Now, we use the definition of pH and clear [H₃O⁺] from there:
![pH=-log[H_3O^{+}]](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%7B%2B%7D%5D%20)
![[H_3O^{+}] = 10^{-pH} =10^{-3,84}=0,00014 M](https://tex.z-dn.net/?f=%20%5BH_3O%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D%20%3D10%5E%7B-3%2C84%7D%3D0%2C00014%20M)
So, the [H₃O⁺] concentration is
0,00014 M
Have a nice day!
Answer:
[H₃O⁺] = 4.3 × 10⁻¹² mol·L⁻¹; [OH⁻] = 2.4 × 10⁻³ mol·L⁻¹;
pH = 11.4; pOH = 2.6
Explanation:
The chemical equation is

For simplicity, let's re-write this as

1. Calculate [OH]⁻
(a) Set up an ICE table.
B + H₂O ⇌ BH⁺ + OH⁻
0.310 0 0
-x +x +x
0.310-x x x
![K_{\text{b}} = \dfrac{\text{[BH}^{+}]\text{[OH}^{-}]}{\text{[B]}} = 1.8 \times 10^{-5}\\\\\dfrac{x^{2}}{0.100 - x} = 1.8 \times 10^{-5}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bb%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BBH%7D%5E%7B%2B%7D%5D%5Ctext%7B%5BOH%7D%5E%7B-%7D%5D%7D%7B%5Ctext%7B%5BB%5D%7D%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.100%20-%20x%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D)
Check for negligibility:
(b) Solve for [OH⁻]
![\dfrac{x^{2}}{0.310} = 1.8 \times 10^{-5}\\\\x^{2} = 0.310 \times 1.8 \times 10^{-5}\\x^{2} = 5.58 \times 10^{-6}\\x = \sqrt{5.58 \times 10^{-6}}\\x = \text{[OH]}^{-} = \mathbf{2.4 \times 10^{-3}} \textbf{ mol/L}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.310%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.310%20%5Ctimes%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5Cx%5E%7B2%7D%20%3D%205.58%20%5Ctimes%2010%5E%7B-6%7D%5C%5Cx%20%3D%20%5Csqrt%7B5.58%20%5Ctimes%2010%5E%7B-6%7D%7D%5C%5Cx%20%3D%20%5Ctext%7B%5BOH%5D%7D%5E%7B-%7D%20%3D%20%5Cmathbf%7B2.4%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctextbf%7B%20mol%2FL%7D)
2. Calculate the pOH
![\text{pOH} = -\log \text{[OH}^{-}] = -\log(2.4 \times 10^{-3}) = \mathbf{2.6}](https://tex.z-dn.net/?f=%5Ctext%7BpOH%7D%20%3D%20-%5Clog%20%5Ctext%7B%5BOH%7D%5E%7B-%7D%5D%20%3D%20-%5Clog%282.4%20%5Ctimes%2010%5E%7B-3%7D%29%20%3D%20%5Cmathbf%7B2.6%7D)
3. Calculate the pH

4 Calculate [H₃O⁺]

To answer the question, we assume that the given compound is an ideal gas that at STP, one mole of the substance will occupy 22.4 L. From the given volume, we determine the number of moles of substance.
7.8 L / (22.4 L /mole) = 0.3482 moles of cfa
Then, we multiply this number of moles by the molar weight of cfa which is equal to 88 g/mol.
Multiplying,
weight = (0.3482 moles of cfa) x (88 g/mol) = <em>30.64 grams</em>
Answer:
V₂ = 15.6 L
Explanation:
Given data:
Initial volume = 175 mL (0.175 L)
Initial pressure = 1 atm
Initial temperature = 273 K
Final temperature = -5°C (-5+273 = 268 K)
Final volume = ?
Final pressure = 1.16 kpa (1.16/101=0.011 atm)
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1 atm × 0.175 L × 268 K / 273 K × 0.011 atm
V₂ = 46.9 L / 3.003
V₂ = 15.6 L