<span>Molar mass(C)= 12.0 g/mol
Molar mass (O2)=2*16.0=32.0 g/mol
Molar mass (CO2)=44.0 g/mol
18g C*1mol C/12 g C = 1.5 mol C
C + O2 → CO2
from reaction 1 mol 1 mol 1 mol
from problem 1.5 mol 1.5 mol 1.5 mol
1.5 mol O2*32 g O2/1 mol O2 = 48 g O2
In reality this reaction requires only 48 g O2 for 18 g carbon.
And from 18 g carbon you can get only
1.5 mol CO2*44 g CO2/1 mol CO2=66 g CO2
But these problem has 72g CO2. The best that we can think, it is a mix of CO2 and O2.
So to find all amount of O2 that was added for the reaction (probably people who wrote this problem wanted this)
we need (the mix of 72g - mass of carbon 18 g)= 54 g.
So the only answer that is possible is </span><span>2.) 54 g.</span>
Answer:
Based on the information, the compound is a phospholipid.
Explanation:
Phospholipids are made up of a fatty acid tail which is hydrophobic in nature and a head which comprises of phosphates that is hydrophilic in nature. Hence, phospholipids are amphiphilic compounds so they will be partially soluble in water and will allow water-soluble substances to mix with fats.
Hence, the composition of the substance described in the question confirms that is a phospholipid. As it's structure contains hydrocarbon and phosphorus and might also contain nitrogen.
Answer is: a lower freezing point has solution of K₂SO₄.
Change in freezing
point from pure solvent to solution: ΔT =i · Kf · b.<span>
Kf - molal freezing-point depression constant for water is 1.86°C/m.
b - molality, moles of solute per
kilogram of solvent.
i - </span>Van't
Hoff factor.<span>
b(K</span>₂SO₄<span>) = 0.35 m.
</span>b(KCl) = 0.5 m.
i(K₂SO₄) = 3.
i(KCl) = 2.
ΔT(K₂SO₄) = 3 · 0.35 m · 1.86°C/m.
ΔT(K₂SO₄) = 1.953°C.
ΔT(KCl) = 2 · 0.5 m · 1.86°C/m.
ΔT(KCl) = 1.86°C.
Answer:
HOMO of 1,3-butadiene and LUMO of ethylene
HOMO of ethylene LUMO of 1,3-butadiene
Explanation:
1,3 - butadiene underogoes cycloaddition reaction with ethylene to give cyclohexene.
According to Frontier molecular orbital theory HOMO of 1,3 butadiene and LUMO of ethylene and HOMO of ethylene and LUMO of ethylene underoges (4 + 2) in thermal or photochemical condition.
Answer:
The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.
Explanation:
Using Boyle's law

Given ,
V₁ = 3.6 L
V₂ = ?
P₁ = 1.0 atm
P₂ = 13.3 atm (From correct source)
Using above equation as:




The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.