Answer:
A wave reflection interaction (reflected by the wall)
Explanation:
In a reflection, the propagating wave is bounced off the reflecting surface because the medium of the surface prevents the propagation of the wave through it, such that wave is redirected at an angle equal to the angle of incident on the reflecting surface
Reflection takes place with the different forms of waves, such as sound wave, water waves, and light wave
The objects around us are seen with the aid of reflection of light from a light source such that the reflected light enters our eyes after being reflected on the surface of the object, and the object is seen.
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
(~26grams/mole) and Avogadros # (6.022x10^23) 84.3grams x 1mole/26grams x 6.022x10^23 molecules/mole = 1.95x10^24 molecules of C2H2
Answer:
No, it is not.
Explanation:
Most solutions do not behave ideally. Designating two volatile substances as A and B, we can consider the following two cases:
Case 1: If the intermolecular forces between A and B molecules are weaker than those between A molecules and between B molecules, then there is a greater tendency for these molecules to leave the solution than in the case of an ideal solution. Consequently, the vapor pressure of the solution is greater than the sum of the vapor pressures as predicted by Raoult’s law for the same concentration. This behavior gives rise to the positive deviation.
Case 2: If A molecules attract B molecules more strongly than they do their own kind, the vapor pressure of the solution is less than the sum of the vapor pressures as predicted by Raoult’s law. Here we have a negative deviation.
The benzene/toluene system is an exception, since that solution behaves ideally.
Use the formula, Q= mcT
Q= heat
m= mass= 1.900Kg= 1.900 x 10^3 grams
c= specific heat= 3.21
T= 4.542 K
Q= (1.900 x10^3g)(3.21)(4.542K)= 14.6 Joules.