Explanation:
When diluting a fruit juice, it is important to know the final volume so as not to over dilute the solution.
- The fruit juice can become too diluted if we don't know the final volume .
- Concentration refers to the amount of solute dissolved in a solvent.
- To achieve a desired amount of concentration during dilution, the volume of the target must be known.
- This will serve as a guide of the amount of solvent to add in order to take the solution to the desired volume.
Learn more:
Dilution brainly.com/question/11493179
#learnwithBrainly
Answer:
C4H8O4
Explanation:
To determine the molecular formula, first, let us obtain the empirical formula. This is illustrated below:
From the question given, we obtained the following information:
C = 45.45%
H = 6.12%
O = 48.44%
Divide the above by their molar mass
C = 45.45/12 = 3.7875
H = 6.12/1 = 6.12
O = 48.44/16 = 3.0275
Divide by the smallest
C = 3.7875/3.0275 = 1
H = 6.12/3.0275 = 2
O = 3.0275/3.0275 = 1
The empirical formula is CH2O
The molecular formula is given by [CH2O]n
[CH2O]n = 132.12
[12 + (2x1) + 16]n = 132.12
30n = 132.12
Divide both side by the coefficient of n i.e 30
n = 132.12/30 = 4
The molecular formula is [CH2O]n = [CH2O]4 = C4H8O4
The molarity is the number of moles in 1 L of the solution.
The mass of NH₃ given - 2.35 g
Molar mass of NH₃ - 17 g/mol
The number of NH₃ moles in 2.35 g - 2.35 g / 17 g/mol = 0.138 mol
The number of moles in 0.05 L solution - 0.138 mol
Therefore number of moles in 1 L - 0.138 mol / 0.05 L x 1L = 2.76 mol
Therefore molarity of NH₃ - 2.76 M
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.