<u>Answer</u>: Conduction, convection, and radiation move energy from the Sun to Earth and throughout Earth.
Without more information about the experiment itself, I would choose the above answer as correct. All the other statements are correct, however none of them relates to the earth distribution processes on Earth. The last statement does.
Missing table!! write the elements with the first letter of the symbol with Upper Caps letters!!!
http://www.chemeddl.org/services/moodle/media/QBank/GenChem/Tables/EStandardTable.htm
<span>Ni2+ +Pb(s) → Ni(s) + Pb2+
</span>The potential of the oxidation of Pb(s) --> Pb2+(aq) is 0.126 V
The potential of the reduction go Ni2+(aq) --> Ni(s) is -0.25 V
<span>Add the two together and the potential for the reaction is -0.124 V (NO SPONTANEOUS THE SIGN IS NEGATIVE)
</span><span>au3+ + al(s) → au(s) + al3+Au3+(aq) -> Au(s) +1.5 VAl -> Al3+ +1.66VV= 3.16 (SPONTANEOUS THE SIGN OF THE PONTENTIAL IS POSITIVE)</span><span>Sr2+ + Sn(s) → Sr(s) + Sn2+
</span>
Sr2+(aq) + 2 e– <span> Sr(s) V= -2.89V
</span>Sn -> Sn2+ V= 0.14 V
V= -2.75 V (no spontaneous)
<span>Fe2+ + Cu(s) → Fe(s) + Cu2+
</span>Fe2+(aq) + 2 e–<span> </span><span> Fe(s) V= -0.44 V
</span>Cu -> C2+ V = - 0.337V
V= - 0.777V (no spontaneous)
Answer:
42.5 g
Explanation:
Calculate the mass of the soft drink given the density and volume:
355 mL × 1.04 g/mL = 369.2 g
Now calculate the mass of sucrose given the percentage:
0.115 × 369.2 g = 42.46 g
Rounded to 3 significant figures, the mass is 42.5 g.
<u>Given:</u>
Concentration of Ba(OH)2 = 0.348 M
<u>To determine:</u>
pOH of the above solution
<u>Explanation:</u>
Based on the stoichiometry-
1 mole of Ba(OH)2 is composed of 1 mole of Ba2+ ion and 2 moles of OH- ion
Therefore, concentration of OH- ion = 2*0.348 = 0.696 M
pOH = -log[OH-] = - log[0.696] = 0.157
Ans: pOH of 0.348M Ba(OH)2 is 0.157