Answer:
On the picture are all principles cited on wikipedia.
Explanation:
So the answer is
1. Environment must be exploited to improve living standards
2. Flourishing human and nonhuman life depends on diversity of life forms
Answer : The temperature of the gas is, 245.9 K
Explanation :
To calculate the temperature of gas we are using ideal gas equation:

where,
P = pressure of gas = 2770.96 torr = 3.646 atm
Conversion used : (1 atm = 760 torr)
V = volume of gas = 88.84 L
T = temperature of gas = ?
R = gas constant = 0.0821 L.atm/mole.K
w = mass of gas = 609.64 g
M = molar mass of
gas = 38 g/mole
Now put all the given values in the ideal gas equation, we get:


Therefore, the temperature of the gas is, 245.9 K
Answer:
V2 = 6616 L
Explanation:
From the question;
Initial volume = 40L
Initial Pressure, P1 = 159atm
Initial Temperature T1 = 25 + 273 = 298K (Upon converting to Kelvin unit)
Final Volume, V2 = ?
Final Pressure, P2 = 1 atm
Final Temperature T2 = 37 + 273= 310K (Upon converting to Kelvin unit)
These quantities are related by the equation;
P1V1 / T1 = P2V2 / T2
V2 = T2 * P1 * V1 / T1 * P2
V2 = 310 * 159 * 40 / (298 * 1)
V2 = 6616 L
The chemical reaction would be written as
2 AsF3<span> + 3 CCl4 = 2 AsCl3 + 3 CCl2F2
</span>
We use the given amounts of the reactants to first find the limiting reactant. Then use the amount of the limiting reactant to proceed to further calculations.
150 g AsF3 ( 1 mol / 131.92 g) = 1.14 mol AsF3
180 g CCl4 (1 mol / 153.82 g) = 1.17 mol CCl4
Therefore, the limiting reactant would be CCl4 since it would be consumed completely. The theoretical yield would be:
1.17 mol CCl4 ( 3 mol CCl2F2 / 3 mol CCl4 ) = 1.17 mol CCl2F2
The question is incomplete, the complete question is;
Which of the following is most likely a heavier stable nucleus? (select all that apply) Select all that apply: A nucleus with a neutron:proton ratio of 1.05 A nucleus with a A nucleus with a neutron:proton ratio of 1.49 The nucleus of Sb-123 A nucleus with a mass of 187 and an atomic number of 75
Answer:
A nucleus with a A nucleus with a neutron:proton ratio of 1.49
A nucleus with a mass of 187 and an atomic number of 75
Explanation:
The stability of a nucleus depends on the number of neutrons and protons present in the nucleus. For many low atomic number elements, the number of protons and number of neutrons are equal. This implies that the neutron/proton ratio = 1
Elements with higher atomic number tend to be more stable if they have a slight excess of neutrons as this reduces the repulsion between protons.
Generally, the belt of stability for chemical elements lie between and N/P ratio of 1 to an N/P ratio of 1.5.
Two options selected have an N/P ratio of 1.49 hence they are heavy stable elements.