Answer:
A
Explanation:
Let's illustrate this; see the attachment.
We see that Mrs. Jacobson is pushing to the right with a force of 100 N and there is another opposite force pushing with a force of 15 N. Since these are in opposite directions, we can say that the force opposite to Mrs. Jacobson is pushing the fridge -15 N to the right (instead of 15 N to the left).
The net force would then be:
100 N + (-15 N) = 85 N to the right
The answer is A.
Answer:
sure
Explanation:
The substance formed after heating the mixture of that of Rahul is caleed a compound. Whereas, Manav's mixture still remains in its current stae that is a heterogeneous mixture.
The compound formed is in black in color whereas the mixture is a mix of brownish-red and yellow.
The compound is a homogeneous mixture whereas the mixture is a heterogenous mixture because of its uneven distribution.
Answer:
0.12 mol KCl
Explanation:
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
15 g x mol
x g KCl = 15 g KClO3 x[ (1 mol KClO3)/ (122.5 g KClO3) ] x [(2 mol KCl)/ (2 mol KClO3)]
x g KCl = 0.12 mol KCl
The molecular formula for aspartame is C14H18N2O5, and its molar mass is about 294 g/mol.
Convert 1.2 g into moles, which gives
1.2 g / 294 g/mol = 4.08 X 10-3 moles aspartame.
Since each mole of aspartame has 2 moles of nitrogen, you have 8.16 X 10-3 moles of N in your 1.2 grams of aspartame.
Finally, multiply that by Avogadro's number to get the number of N atoms:
8.16 X 10^-3 mol X 6.02 X 10^23 = 4.9 X 10^21 nitrogen atoms.
C+2H2 -------> CH4
from reaction 2 mol 1 mol
from the problem x mol 10 mol
x=2*10/1 = 20 mol
Answer: 20 mol of H2.