answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
2 years ago
8

What volume of 0.500 M HNO₃(aq) must completely react to neutralize 100.0 milliliters of 0.100 M KOH(aq)?

Chemistry
1 answer:
USPshnik [31]2 years ago
4 0

Answer:

v = 500 milliliters

Explanation:

HNO_{3}  ⇒  H^{+}  + NO^{3-}

KOH  ⇒  K^{+}  + OH^{-}

1 H^{+} to 1 OH^{-}

\frac{0,5}{V}  = \frac{0,1}{100} \\\\v * 0,1 = 50\\v = 500 milliliters

You might be interested in
What is the mass of 1.82 moles of lithium carbonate?
Svetlanka [38]
You can view more details on each measurement unit: molecular weight of Lithium Carbonate or grams The molecular formula for Lithium Carbonate is Li2CO3. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles Lithium Carbonate, or 73.8909 grams.
5 0
2 years ago
Read 2 more answers
A poisoned pill contains 0.00048 moles of KCN. How many molecules are in this sample?
mario62 [17]

Answer:

2.89 \times  {10}^{20}  \:  \: molecules

Explanation:

The number of molecules of KCN can be found by using the formula

<h3>N = n × L</h3>

where n is the number of moles

N is the number of entities

L is the Avogadro's constant which is

6.02 × 10²³ entities

From the question we have

N = 0.00048 × 6.02 × 10²³

We have the final answer as

2.89 \times  {10}^{20}  \:  \:  \: molecules

Hope this helps you

7 0
1 year ago
what is 31/50000 If the toxic quantity is 1.5 g of ethylene glycol per 1000 g of body mass, what percentage of ethylene glycol i
Sveta_85 [38]

Answer:

\%m=0.15\%

Explanation:

Hello,

In this case, we are asked to compute the by mass percent representing the toxicity of ethylene glycol in the body mass. In such a way, since the by mass percent is computed with the shown below formula:

\%m=\frac{m_{ethylene \ glycol}}{m_{ethylene \ glycol}+m_{body\ mass}}*100\%

We can use the given masses to obtain:

\%m=\frac{1.5g}{1.5g+1000g}*100\%\\ \\\%m=0.15\%

Best regards.

7 0
2 years ago
(b) When a sample of C2H5OH was combusted, the volume of CO2(g) produced was 18.0 L when measured at
myrzilka [38]

Answer:

i) The number of moles of CO₂ (g) produced from the reaction = 0.07663 mole

ii) The volume of C₂H₅OH (l), in mL, that was combusted to produce the volume of CO₂ (g)

collected = 2.234 mL

iii) The amount of heat, in KJ, that was released by the combustion reaction = 52.4 kJ

Explanation:

The balanced chemical reaction when ethanol is combusted is given as

C₂H₅OH (l) + 3O₂ (g) → 2CO₂ (g) + 3H₂O (g)

The volume of CO₂(g) produced was 18.0 L when measured at 21.7°C and 1.03 atm.

i) Number of moles of CO₂ (g) produced by the reaction

With the correct and logical assumption that CO₂ is an ideal gas, the ideal gas equation has the relation

PV = nRT

P = pressure = 1.03 atm = 1.03 × 101325 Pa = 10,435.96 Pa

V = Volume of the gas = 18.0 L = 0.018 m³

n = number of moles = ?

R = molar gas constant = 8.314 J/mol.K

T = absolute temperature in Kelvin = 21.7 + 273.15 = 294.85 K

(10,435.96 × 0.018) = n × 8.314 × 294.85

n = 0.076629106 = 0.07663 mole

ii) The volume of C₂H₅OH (l), in mL, that was combusted to produce the volume of CO₂(g)

collected.

Recall the stoichiometric balance of the reaction

C₂H₅OH (l) + 3O₂ (g) → 2CO₂ (g) + 3H₂O (g)

2 moles of CO₂ is obtained from 1 mole of C₂H₅OH

0.07663 mole of CO₂ will be obtained from (0.07663×1/2) mole of C₂H₅OH; that is, 0.03831 mole of C₂H₅OH.

But we can convert this number of moles used up to mass of C₂H₅OH produced

Mass = (Number of moles) × (Molar Mass)

Molar mass of C₂H₅OH = 46.07 g/mol

Mass of C₂H₅OH combusted from the reaction

= 0.03831 × 46.07 = 1.765 g

But density of C₂H₅OH = 0.79 g/mL

Density = (Mass)/(Volume)

Volume = (Mass)/(Density) = (1.765/0.79)

= 2.234 mL

iii) The amount of heat, in KJ, that was released by the combustion reaction.

The heat of combustion of C₂H₅OH at the temperature of the reaction = -1367.6 kJ/mol. (From literature)

1 mole of C₂H₅OH combusts to give 1367.6 kJ of heat

0.03831 mole of C₂H₅OH will give (0.03831×1367.6) = 52.39 kJ = 52.4 kJ

Hope this Helps!!!!

3 0
2 years ago
From the graph of Density vs. Concentration, created in Graph 1, what was the relationship between the concentration of the suga
USPshnik [31]

The graph is not given in the question, so, the required graph is attached below:

Answer:

According to the graph, the relationship between the density of the sugar solution and the concentration of the sugar solution is directly proportional to each other as they both are increasing exponentially.

The graph shows that, the density of sugar solution will increase with the increase in concentration of sugar in the solution.

8 0
2 years ago
Other questions:
  • What is the mass of a sample of water containing 3.55×1022 molecules of h2o?
    10·2 answers
  • 100 points!!!!!!!!!!!!!!!!!! how does a volcanic eruption benefit the surrounding area? A. Lava and ash bury animal habitats. B.
    7·2 answers
  • The lewis structure of pf3 shows that the central phosphorus atom has ________ nonbonding and ________ bonding electron pair(s)
    11·2 answers
  • A certain microwave has a wavelength of 0.032 meters. Calculate the frequency of this microwave
    7·1 answer
  • What mass of sodium chloride (NaCl) forms when 7.5 g of sodium carbonate (Na2CO3) reacts with a dilute solution of hydrochloric
    11·2 answers
  • Report the precise concentration of the undiluted stock solution #1 of TZ in micromoles per liter. This is your most concentrate
    7·1 answer
  • Consider NH3 and PH3. Electronegativities: P = 2.1, H = 2.1, N=3.0. Which statement is false?
    10·1 answer
  • Commercially available hot packs are simple in design: a pouch with water on one side, isolated by a barrier from a specific sal
    7·1 answer
  • To calculate the relative age of rocks, geologists use the rate of radioactive decay of isotopes present in their samples. What
    6·1 answer
  • You have four water samples at different temperatures. In which sample are the molecules vibrating at the fastest speed? A. wate
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!