answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vedmedyk [2.9K]
1 year ago
10

a mixture was found to contain 1.05g of sio2, 0.69g of cellulose, and 1.82g of calcium carbonate, what percentage of calcium car

bonate is in the mixture
Chemistry
1 answer:
enot [183]1 year ago
6 0
Mass percentage is another way of expressing concentration of a substance in a mixture. Mass percentage is calculated as the mass of a component divided by the total mass of the mixture, multiplied by 100%. It is calculated as follows:

% CaCO3 = (<span>1.82g of calcium carbonate</span> / (1.05 g SiO2 + 0.69 g of cellulose + <span>1.82g of calcium carbonate)) x 100% = 51.12% Calcium carbonate</span>
You might be interested in
What does the oxidizing agent do in a redox reaction apex?
densk [106]
Same as balancing a regular chemical reaction! Please see the related question to the bottom of this answer for how to balance a normal chemical reaction. This is for oxidation-reduction, or redox reactions ONLY! These instructions are for how to balance a reduction-oxidation, or redox reaction in aqueous solution, for both acidic and basic solution. Just follow these steps! I will illustrate each step with an example. The example will be the dissolution of copper(II) sulfide in aqueous nitric acid, shown in the following unbalanced reaction: CuS (s) + NO 3 - (aq) ---> Cu 2+ (aq) + SO 4 2- (aq) + NO (g) Step 1: Write two unbalanced half-reactions, one for the species that is being oxidized and its product, and one for the species that is reduced and its product. Here is the unbalanced half-reaction involving CuS: CuS (s) ---> Cu 2+ (aq) + SO 4 2- (aq) And the unbalanced half-reaction for NO 3 - is: NO 3 - (aq) --> NO (g) Step 2: Insert coefficients to make the numbers of atoms of all elements except oxygen and hydrogen equal on the two sides of each half-reaction. In this case, copper, sulfur, and nitrogen are already balanced in the two half-reaction, so this step is already done here. Step 3: Balance oxygen by adding H 2 O to one side of each half-reaction. CuS + 4 H 2 O ---> Cu 2+ + SO 4 2- NO 3 - --> NO + 2 H 2 O Step 4: Balance hydrogen atoms. This is done differently for acidic versus basic solutions. . For acidic solutions: Add H 3 O + to each side of each half-reaction that is "deficient" in hydrogen (the side that has fewer H's) and add an equal amount of H 2 O to the other side. For basic solutions: add H 2 O to the side of the half-reaction that is "deficient" in hydrogen and add an equal amount of OH - to the other side. Note that this step does not disrupt the oxygen balance from Step 3. In the example here, it is in acidic solution, and so we have: CuS + 12 H 2 O ---> Cu 2+ + SO 4 2- + 8 H 3 O + . NO 3 - + 4 H 3 O + --> NO + 6 H 2 O Step 5: Balance charge by inserting e - (electrons) as a reactant or product in each half-reaction. Oxidation: CuS + 12 H 2 O ---> Cu 2+ + SO 4 2- + 8 H 3 O + + 8 e - . Reduction: NO 3 - + 4 H 3 O + + 3 e - --> NO + 6 H 2 O . Step 6: Multiply the two half-reactions by numbers chosen to make the number of electrons given off by the oxidation step equal to the number taken up by the reduction step. Then add the two half-reactions. If done correctly, the electrons should cancel out (equal numbers on the reactant and product sides of the overall reaction). If H 3 O + , H 2 O, or OH - appears on both sides of the final equation, cancel out the duplication also. Here the oxidation half-reaction must be multiplied by 3 (so that 24 electrons are produced) and the reduction half-reaction must by multiplied by 8 (so that the same 24 electrons are consumed). 3 CuS + 36 H 2 O ---> 3 Cu 2+ + 3 SO 4 2- + 24 H 3 O + + 24 e - 8 NO 3 - + 32 H 3 O + + 24 e - ---> 8 NO + 48 H 2 O Adding these two together gives the following equation: 3 CuS + 36 H 2 O + 8 NO 3 - + 8 H 3 O + ---> 3 Cu 2+ + 3 SO 4 2- + 8 NO + 48 H 2 O Step 7: Finally balancing both sides for excess of H 2 O (On each side -36) This gives you the following overall balanced equation at last: 3 CuS (s) + 8 NO 3 - (aq) + 8 H 3 O + (aq) ---> 3 Cu 2+ (aq) + 3 SO 4 2- (aq) + 8 NO (g) + 12 H 2 O (l)


6 0
2 years ago
Read 2 more answers
Your friend says, “chemical changes are caused by an input in energy. In physical changes, there is no transfer of energy” is yo
Viktor [21]

Answer: Your friend is incorrect.

Explanation: If we have an object or something that isn’t moving, (let’s say a notebook on a desk). If there is change, and the notebook moves, there is acceleration. Force = Mass times acceleration, f = m*a. There has to be a force, first of all. If you touched the notebook and moved it, some of your energy is transferred and now the notebook has kinetic energy. If our system is you and the notebook, the total energy doesn’t change. the energy is transferred, but doesn’t change. Your friend is not correct. Please give brainliest hope this helped!

6 0
1 year ago
Write chemical equations and corresponding equilibrium expressions for each of the two ionization steps of carbonic acid. Part A
lesantik [10]

<u>Answer:</u> The chemical equations and equilibrium constant expression for each ionization steps is written below.

<u>Explanation:</u>

The chemical formula of carbonic acid is H_2CO_3. It is a diprotic weak acid which means that it will release two hydrogen ions when dissolved in water

The chemical equation for the first dissociation of carbonic acid follows:

               H_2CO_3(aq.)\rightleftharpoons H^+(aq.)+HCO_3^-(aq.)

The expression of first equilibrium constant equation follows:

Ka_1=\frac{[H^+][HCO_3^{-}]}{[H_2CO_3]}

The chemical equation for the second dissociation of carbonic acid follows:

               HCO_3^-(aq.)\rightarrow H^+(aq.)+CO_3^{2-}(aq.)

The expression of second equilibrium constant equation follows:

Ka_2=\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}

Hence, the chemical equations and equilibrium constant expression for each ionization steps is written above.

6 0
2 years ago
A particular reaction has an enthalpy and entropy of reaction of ∆H = +33 kJ/mol and ∆S = +0.15 kJ/mol⋅K. At the three indicated
Thepotemich [5.8K]

Answer:

Explanation:  check my paage

4 0
1 year ago
NO2 can react with the NO in smog, forming a bond between the N atoms. Draw the structure of the resulting compound, including f
ELEN [110]
First, let's write down the balanced chemical reaction between the given reactants:

NO₂ + NO → N₂O + O₂

The Lewis structure of the main product is shown in the attached picture. To determine the formal charge of each element, the formula is as follows:

Formal Charge = Valence electrons - Non-bonding valence electrons - (Bonding electrons/2)

For the leftmost N:
Formal charge = 5 - 2 - 6/2 = 0
For the middle N:
Formal charge = 5 - 0 - 8/2 = 1
For O:
Formal charge = 6 - 6 - 2/2 = -1

6 0
1 year ago
Other questions:
  • If a person looking at a poster sees green instead of yellow and doesn't see red at all, this person most likely has color blind
    5·2 answers
  • Convert mass to moles for both reactants. (round to 2 significant figures.) 2.50 g cuci2 equals moles e 0.25 g Al equals moles D
    5·2 answers
  • How does 0.5 m sucrose (molecular mass 342) solution compare to 0.5 m glucose (molecular mass 180) solution?
    8·2 answers
  • eleanor purchased $2568 worth of stock and paid her broker a 0.5% fee. She sold the stock when the stock price increased to 3928
    14·1 answer
  • What is the number of moles in 15.0 g AsH3?
    11·1 answer
  • The atomic mass of carbon is 12.01, sodium is 22.99, and oxygen is 16.00. What is the molar mass of sodium oxalate (Na2C2O4)?
    6·1 answer
  • A 0.4657 g sample of a pure soluble bromide compound is dissolved in water, and all of the bromide ion is precipitated as AgBr b
    13·1 answer
  • Lithium ions in Lithium selenide (Li2Se) have an atomic radius of 73 pm whereas the selenium ion is 184 pm. This compound is mos
    13·1 answer
  • Use the table to answer the questions. What is the fastest time trial for the first quarter checkpoint? What is the slowest time
    13·1 answer
  • Why is it necessary to assign organic chemistry exclusively to the study of carbon compounds?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!