Hydrocarbons may vary from state to state depending on the length of the carbon chain. For methane to butane, they are usually in gas form. Starting from pentane, they are in the liquid form. For very long carbon chains, that occur as solids. Now, it depends if the pentane is in a nonpolar liquid or polar liquid. Since pentane is nonpolar, it is miscible in the liquid solvent. The movements would most likely be free flowing. But if he solvent is polar, the molecules would repel with one another. In the end, it will form two liquid phases, on for the pentane and one for the polar solvent.
Answer:
V₂ =31.8 mL
Explanation:
Given data:
Initial volume of gas = 45 mL
Initial temperature = 135°C (135+273 =408 K)
Final temperature = 15°C (15+273 =288 K)
Final volume of gas = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 45 mL × 288 K / 408 k
V₂ = 12960 mL.K / 408 K
V₂ =31.8 mL
Answer:
The atomic mass of second isotope is 7.016
Explanation:
Given data:
Average Atomic mass of lithium = 6.941 amu
Atomic mass of first isotope = 6.015 amu
Relative abundance of first isotope = 7.49%
Abundance of second isotope = ?
Atomic mass of other isotope = ?
Solution:
Total abundance = 100%
100 - 7.49 = 92.51%
percentage abundance of second isotope = 92.51%
Now we will calculate the mass if second isotope.
Average atomic mass of lithium = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
6.941 = (6.015×7.49)+(x×92.51) /100
6.941 = 45.05235 + (x92.51) / 100
6.941×100 = 45.05235 + (x92.51)
694.1 - 45.05235 = (x92.51)
649.04765 = x
92.51
x = 485.583 /92.51
x = 7.016
The atomic mass of second isotope is 7.016
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
Answer:
Explanation:
wavelength λ = 12.4 x 10⁻² m .
energy of one photon = h c / λ
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 12.4 x 10⁻²
= 1.6 x 10⁻²⁴ J .
Let density of coffee be equal to density of water .
mass of coffee = 255 x 1 = 255 g
heat required to heat up coffee = mass x specific heat x rise in temp
= 255 x 4.18 x ( 62-25 )
= 39438.3 J .
No of photons required = heat energy required / energy of one photon
= 39438.3 / 1.6 x 10⁻²⁴
= 24649 x 10²⁴
= 24.65 x 10²⁷ .