Answer:
See explanation and image attached
Explanation:
This reaction is known as mercuric ion catalyzed hydration of alkynes.
The first step in the reaction is attack of the mercuric ion on the carbon-carbon triple bond, a bridged intermediate is formed. This bridged intermediate is attacked by water molecule to give an organomercury enol. This undergoes keto-enol tautomerism, proton transfer to the keto group yields an oxonium ion, loss of the mercuric ion now gives equilibrium keto and enol forms of the compound. The keto form is favoured over the enol form.
Answer:
Part A
K = (K₂)²
K = (K₃)⁻²
Part B
K = √(Ka/Kb)
Explanation:
Part A
The parent reaction is
2Al(s) + 3Br₂(l) ⇌ 2AlBr₃(s)
The equilibrium constant is given as
K = [AlBr₃]²/[Al]²[Br₂]³
2) Al(s) + (3/2) Br₂(l) ⇌ AlBr₃(s)
K₂ = [AlBr₃]/[Al][Br₂]¹•⁵
It is evident that
K = (K₂)²
3) AlBr₃(s) ⇌ Al(s) + 3/2 Br₂(l)
K₃ = [Al][Br₂]¹•⁵/[AlBr₃]
K = (K₃)⁻²
Part B
Parent reaction
S(s) + O₂(g) ⇌ SO₂(g)
K = [SO₂]/[S][O₂]
a) 2S(s) + 3O₂(g) ⇌ 2SO₃(g)
Ka = [SO₃]²/[S]²[O₂]³
[SO₃]² = Ka × [S]²[O₂]³
b) 2SO₂(g) + O₂(g) ⇌ 2 SO₃(g)
Kb = [SO₃]²/[SO₂]²[O₂]
[SO₃]² = Kb × [SO₂]²[O₂]
[SO₃]² = [SO₃]²
Hence,
Ka × [S]²[O₂]³ = Kb × [SO₂]²[O₂]
(Ka/Kb) = [SO₂]²[O₂]/[S]²[O₂]³
(Ka/Kb) = [SO₂]²/[S]²[O₂]²
(Ka/Kb) = {[SO₂]/[S][O₂]}²
Recall
K = [SO₂]/[S][O₂]
Hence,
(Ka/Kb) = K²
K = √(Ka/Kb)
Hope this Helps!!!
Answer:
The correct option is D.
Explanation:
Radioactive substances usually emit different types of particles when they are decaying. Such particles include alpha particles, beta particles and gamma ray. When an alpha particle is emitted from an unstable radioactive nucleus such nucleus usually lost an atomic mass that correspond to that of helium atom. Note that an alpha particle is made up of two protons and two neutrons, which result in mass number of 4. Thus, a nucleus that emit an alpha particle will have its mass number (atomic mass) reduce by 4 and atomic number that is reduced by 2.