Answer : The normality of the solution is, 30.006 N
Explanation :
Normality : It is defined as the number of gram equivalent of solute present in one liter of the solution.
Mathematical expression of normality is:

or,

First we have to calculate the equivalent weight of solute.
Molar mass of solute
= 94.97 g/mole

Now we have to calculate the normality of solution.

Therefore, the normality of the solution is, 30.006 N
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol
Hello there!
To determine the fraction of the hydrogen atom's mass that is in the nucleus, we have to keep in mind that
a Hydrogen atom has 1 proton and 1 electron.
Protons are in the nucleus while electrons are in electron shells surrounding the nucleus.
The mass of the nucleus will be equal to the mass of 1 proton and we can express the fraction as follows:

So, the fraction of the hydrogen atom's mass that is in the nucleus is
0,9995. That means that almost all the mass of this atom is at the nucleus.
Have a nice day!
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Answer:
I believe it's false because the atomic number is the number of protons in the nucleus of an atom.