Answer:
Explanation:
I don't know how you want the conversion done. I use dimensional analysis.
Jane
12 miles / hour [1.6 km/1 mile][1000 m/1 km][1 hour / 3600 sec]
12 * [1.6 * 3600 / 1000 m/s] = 69.12 m/s
5.33 m/s This answer is a bit shorter than using 5280 feet.
Using 5280 feet
12 miles / hour [5280 ft/1 mile] [1 m/3.281 feet] * [1 hr/3600 sec]
12 * 5280 / (3.281 * 3600)
12 *. 4470
5.36
Jack
330 feet / minute [ 1 meter / 3.281 feet] [1 minute / 60 seconds]
330 * 1/(3.281 * 60)
330 * 1/(196.86)
1.676 m/s
She's going faster than he is, no matter which method is used to do the calculation
The lower the pKa<span> of a Bronsted acid, the more easily it gives up its proton. The </span>higher<span> the </span>pKa<span> of a Bronsted acid, the more tightly the proton is held, and the less easily the proton is given up.
Here we need the highest pKa, so we need to see which compound will less likely to give proton or hydrogen ion.
</span><span>Now, all Nitrogen contains a lone pair. But HALOGEN groups( F, Cl, only) being electronegative than NITROGEN [electronegativity of N=3, F=4 and Cl=3], pulls electron pair towards itself.
</span>
The more the lone pair of nitrogen is pulled, the more strong bond between N and H will become, which means less likely to give hydrogen ion.
means high Pka
C) option is the answer because it has 3 F very close to N.