Answer:
a. The original temperature of the gas is 2743K.
b. 20atm.
Explanation:
a. As a result of the gas laws, you can know that the temperature is inversely proportional to moles of a gas when pressure and volume remains constant. The equation could be:
T₁n₁ = T₂n₂
<em>Where T is absolute temperature and n amount of gas at 1, initial state and 2, final states.</em>
<em />
<em>Replacing with values of the problem:</em>
T₁n₁ = T₂n₂
X*7.1g = (X+300)*6.4g
7.1X = 6.4X + 1920
0.7X = 1920
X = 2743K
<h3>The original temperature of the gas is 2743K</h3><h3 />
b. Using general gas law:
PV = nRT
<em>Where P is pressure (Our unknown)</em>
<em>V is volume = 2.24L</em>
<em>n are moles of gas (7.1g / 35.45g/mol = 0.20 moles)</em>
R is gas constant = 0.082atmL/molK
And T is absolute temperature (2743K)
P*2.24L = 0.20mol*0.082atmL/molK*2743K
<h3>P = 20atm</h3>
<em />
<u>Full Question:</u>
The list below includes some of the properties of butane, a common fuel. Identify the chemical properties in the list. Check all of the boxes that apply.
denser than water
burns readily in air
boiling point of –1.1°C
odorless
does not react with water
burns readily in air
does not react with water
<h3><u>
Explanation:</u></h3>
The type of alkane that is used in many products includes Butane. It is found as a natural gas in the environment. It is found on the deeper part of ground. It can be obtained by drilling process and gets used up in many of the products that is used for commercial purposes.
Molecular mass that is associated with butane is 58.12 g/mol. The boiling point of butane is -1 degree Celsius and -140 degree Celsius is its melting point. It is a liquefied gas and does not react with water. It will burn in air more readily.
The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.
<span>The density of an iceberg is less than that of water and that is why it floats. It is the same as ice cubes floating on water too. Water is a very unique substance in that it is one of few compounds where cooling it past freezing point decreases its density (study hydrogen bonds). The possible answers are therefore A or C. If the majority of the ice is below the water then it should be clear from common sense that A is the correct answer as it would mostly float on the top with just a little under the surface if the answer were as low as C. See Archimedes Principle for an explanation of how much of the ice floats and how much is underwater.</span>
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol