Answer:
true I just took the test this morning
The chemical reaction would be as follows:
CO + 2H2 =CH3OH
We are given the amount of reactants to be used. We have to use these amounts to determine which is the limiting reactant and how much of the excess reactant is left.
1.50x10^-6 g CO ( 1 mol / 28.01 g ) = 5.36x10^-8 mol CO
6.80 x10^-6 g H2 ( 1 mol / 2.02 g ) = 3.37x10^-6 mol H2
Therefore, it is CO that is consumed completely in the reaction and the number of moles gas left would be 3.37x10^-6 - 5.36x10^-8 = 3.32x10^-6 moles.
Answer:The correct answer is ;
The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
Explanation:

In an oxidation recation addition of oxygen atom takes place or loss of electrons takes place.
In an reduction reaction removal of oxygen atom takes place or gain of electrons takes place.
In the given reaction , the nitrogen atom is present in +2 oxidation state in NO molecule and present in 0 oxidation state in
molecule. Hence, nitrogen is getting reduced that is reduction reaction. NO is oxidizing agent
In the given reaction , the carbon atom is present in +2 oxidation state in CO molecule and present in +4 oxidation state in
molecule. Hence ,carbon is getting oxidized that is oxidation reaction. CO is a reducing agent.
The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.
Answer:
-
Alcohol-related diseases frequently cause low Mg+ levels.
- Mg+ deficiencies must be treated before potassium (K+) deficiencies.
- Mg+ deficiencies often result in low serum potassium (K+)
- Mg++ levels present similarly to calcium (Ca++) levels in the blood.
- Vomiting is not generally seen as a major cause of Mg+ loss