Answer:
a) find attached image 1
b) find attached image 2
Explanation :
The more stable radical is formed by a reaction with smaller bond dissociation energy.
since the bond dissociation for cleavage of the bond to form primary free radical is higher, more energy must be added to form it. This makes primary free radical higher in energy and therefore less stable than secondary free radical.
Answer : The volume of the cube submerged in the liquid is, 29.8 mL
Explanation :
First we have to determine the mass of ice.
Formula used :

Given:
Density of ice = 
Volume of ice = 45.0 mL


The cube will float when 40.5 g of liquid is displaced.
Now we have to determine the volume of the cube is submerged in the liquid.



Thus, the volume of the cube submerged in the liquid is, 29.8 mL
Answer:

Explanation:
Hello there!
In this case, given the neutralization of the acetic acid as a weak one with sodium hydroxide as a strong base, we can see how the moles of the both of them are the same at the equivalence point; thus, it is possible to write:

Thus, we solve for the molarity of the acid to obtain:

Regards!
Answer:
(a) 0.22 mol Cl₂ and 15.4g Cl₂
(b) 2.89.10⁻³ mol O₂ and 0.092g O₂
(c) 8 mol NaNO₃ and 680g NaNO₃
(d) 1,666 mol CO₂ and 73,333 g CO₂
(e) 18.87 CuCO₃ and 2,330g CuCO₃
Explanation:
In most stoichiometry problems there are a few steps that we always need to follow.
- Step 1: Write the balanced equation
- Step 2: Establish the theoretical relationship between the kind of information we have and the one we are looking for. Those relationships can be found in the balanced equation.
- Step 3: Apply conversion factor/s to the data provided in the task based on the relationships we found in the previous step.
(a)
Step 1:
2 Na + Cl₂ ⇄ 2 NaCl
Step 2:
In the balanced equation there are 2 moles of Na, thus 2 x 23g = 46g of Na. <u>46g of Na react with 1 mol of Cl₂</u>. Since the molar mass of Cl₂ is 71g/mol, then <u>46g of Na react with 71g of Cl₂</u>.
Step 3:


(b)
Step 1:
HgO ⇄ Hg + 0.5 O₂
Step 2:
<u>216.5g of HgO</u> form <u>0.5 moles of O₂</u>. <u>216.5g of HgO</u> form <u>16g of O₂</u>.
Step 3:


(c)
Step 1:
NaNO₃ ⇄ NaNO₂ + 0.5 O₂
Step 2:
<u>16g of O₂</u> come from <u>1 mol of NaNO₃</u>. <u>16g of O₂</u> come from <u>85g of NaNO₃</u>.
Step 3:


(d)
Step 1:
C + O₂ ⇄ CO₂
Step 2:
<u>12 g of C</u> form <u>1 mol of CO₂</u>. <u>12 g of C</u> form <u>44g of CO₂</u>.
Step 3:

[/tex]
(e)
Step 1:
CuCO₃ ⇄ CuO + CO₂
Step 2:
<u>79.5g of CuO</u> come from <u>1 mol of CuCO₃</u>. <u>79.5g of CuO</u> come from <u>123.5g of CuCO₃</u>.
Step 3:

The more numbers after the decimal point there are, the more precise the instrument which recorded it is. For example, if one instrument during seismic activity records that the magnitude of the earthquake was 2.3, and another instrument recorded that it was 2.3645, the second instrument would have shown to be more precise.