Answer: The empirical formula for the given compound is 
Explanation : Given,
Percentage of C = 84.4 %
Percentage of H = 15.6 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of C = 84.4 g
Mass of H = 15.6 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 7.03 moles.
For Carbon = 
For Hydrogen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of C : H = 1 : 2
Hence, the empirical formula for the given compound is 
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
Answer:
The enthalpy change for the given reaction is 424 kJ.
Explanation:

We have :
Enthalpy changes of formation of following s:



(standard state)
![\Delta H_{rxn}=\sum [\Delta H_f(product)]-\sum [\Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5B%5CDelta%20H_f%28product%29%5D-%5Csum%20%5B%5CDelta%20H_f%28reactant%29%5D)
The equation for the enthalpy change of the given reaction is:
=

=


The enthalpy change for the given reaction is 424 kJ.
Answer:
B. 45k
The human body is about 60 to 70% water.
(:
Hydrogen gas(H2) has a molar mass of 2 g. Molar mass of a substance is defined as the mass of 1 mole of that substance. And by 1 mole it is meant a collection of 6.022*10^23 particles of that substance.
So number of moles of H2 are 0.5 in this case. And thus it means there are (6.022*10^23)*0.5 particles( here they are molecules) in 1g of H2.