Answer: the bonds in the methane and oxygen come apart, the atoms rearrange and then re-bond to form water and carbon dioxide
Explanation:^
Answer:
(A) The work done by the system is -101.325J
(B) The workdone by the system is -90.75J
Explanation:
(A) Workdone = -PΔV
Given that A = 100cm2 = 0.01m2
distance d = 10cm = 0.1m
ΔV= Area × distance
ΔV= 0.01 ×0.1
ΔV = 0.001m3
P= external pressure = 1atm = 101325Pa
Workdone = -0.001 × 101325
W= - 101.325Pa m3
1Pam3 = 1J
Therefore W = - 101.325J
The work done on the system is -101.325J
(B) Workdone = -PΔV
Given that A = 50cm2 = 0.005m2
distance d = 15cm = 0.15m
ΔV= Area × distance
ΔV= 0.005×0.15
ΔV = 0.00075m3
P=121kPa = 121000Pa
W= - 121000 × 0.00075
W= -90.75Pa m3
1Pam3 = 1J
W = - 90.75J
The woekdone by the system is -90.75J
Answer:
The Atomic Number of the atom of an element whose model is given is "8" that is option no. 'C' in the question.
Explanation:
An Atom comprises of 3 basic structures that are Protons, Neutrons and Electrons. The central part is the Nucleus which contains protons and neutrons having positive charge and no charge respectively. The electrons are revolving around the nucleus in electronic shells having the negative charge.
<u><em>ATOMIC NUMBER: </em></u>
Atomic number is the number of protons present inside the nucleus of an atom and it determines the place of that particular atom in the <u>Periodic Table.</u>
In the model, given in the question, the nucleus contains 2 types of balls dark gray colored and light gray colored. The key at the bottom shows the dark gray colored ball as having a positive charge and thus it represents the atomic number for the given atom of element which is <u><em>EIGHT (8).</em></u>
So, the atomic number for the given atom is 8 which is element OXYGEN.
The answer:
<span>The equation of its dissolution in water is: AgNO3 → Ag + (aq) + NO3- (aq)
and </span>AgNO3 → Ag + (aq) + NO3- (aq)
1 mol 1mol 1mol
? -------- 0.854mo
so for finding the value, it is sufficients to complute 1 x 0.854 mol =0.854 mol
so, 0.854 mol is required for the reaction to form 0.854 mol of Ag
The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment.