Answer:
1. Galvanic oxidation. Example is the corrosion of aluminium wires when in contact with copper wires under wet conditions.
2. Rainwater or Damp/moist air
3. Chromium-plated steel screws or stainless steel screws or galvanized steel screws
Explanation:
1. Galvanic oxidation or corrosion occurs when two different metals with different electrode potentials are brought into contact with each other by means of an electrolyte (usually a aqueous solution), such that a redox reaction occurs leading to one metal with the more negative electrode potential (the anode) becoming oxidized, while the other less negative potential (the cathode) is reduced.
In order for galvanic corrosion to occur, three elements are required.
i. Two metals with different corrosion potentials (anode and cathode)
ii. Direct metal-to-metal electrical contact
iii. A conductive electrolyte solution (e.g. water) must connect the two metals on a regular basis.
For example oxidation (corrosion) of aluminium wires when in contact with copper wire under wet conditions.
2. The most likely electrolyte will be rainwater containing dissoved solutes (if the panel is in an exposed part of the house) or damp/moist air.
3. From the table, the most likely screw will be chromium-plated steel screws or stainless steel (made of iron and nickel) screws or galvanized steel (zinc-plated) screws.
All these possible screw components have a more negative electrode potential than copper. Thus they will serve as the anode in a galvanic oxidation with copper.
Answer:
First one is 5.0 M ammonia and the Second one ?
Explanation:
Answer:
C₂H₂O₃
Explanation:
The empirical formula of a compound is derived bu finding the whole ratios of the constituent elements.
In succinic acid, the ratios of carbon to hydrogen to oxygen is calculated as follows:
<u>% mass</u>
Carbon- 40.60
Hydrogen - 5.18
Oxygen - 54.22
<u>RAM</u>
Carbon -12
Oxygen - 15.994
Hydrogen -1.008
<u>No of moles elements in the compound</u>
Carbon = 40.60/12=3.3833
Oxygen = 54.22/15.994= 3.39
Hydrogen= 5.18/1.008 = 5.1389
Mole ratios of the individual elements we divide by the smallest value of the number of moles.
Carbon: Hydrogen : Oxygen
3.3833/3.3833:3.39/3.3833:5.1389/3.3833
=1:1:1.5
We can multiply the value by 2 to get the whole number ratio.
=2:2:3
The empirical formula will be:
C₂H₂O₃
Answer:
Property of an element by virtue of which it exists in two or more forms which differ only in their physical properties is known as allotropy. Allotropes are the different physical forms in which the element can exist. Allotropes are different physical forms of the same element.
Also-
Allotropes are different forms of the same element in the molecular level. Isotopes are different forms of atoms of the same chemical element. The key difference between allotropes and isotopes is that allotropes are considered at the molecular level, whereas isotopes are considered at the atomic leve
Explanation:
~Hope this helps~
No, they do not.
Carbon dioxide has a linear geometry because the lone pair and bond pair repulsion cancels out; however, water has a bent structure because only the oxygen atom possesses a lone pair which brings the bonding electron pairs closer.