Answer:
I’m pretty sure it’s Lions sleeping after a big meal
Explanation:
This problem handles<em> boiling-point elevation</em>, which means we will use the formula:
ΔT = Kb * m
Where ΔT is the difference of Temperature between boiling points of the solution and the pure solvent (Tsolution - Tsolvent). Kb is the ebullioscopic constant of the solvent (2.64 for benzene), and m is the molality of the solution.
Knowing that benzene's boiling point is 80.1°C, we <u>solve for m</u>:
Tsolution - Tsolvent = Kb * m
80.23 - 80.1 = 2.64 * m
m = 0.049 m
We use the definition of molality to <u>calculate the moles of azulene</u>:
0.049 m = Xmoles azulene / 0.099 kgBenzene
Xmoles azulene = 4.87 x10⁻³ moles azulene
We use the mass and the moles of azulene to<u> calculate its molecular weight</u>:
0.640 g / 4.875 x10⁻³ mol = 130.28 g/mol
<em>A molecular formula that would fulfill that molecular weight</em> is C₁₀H₁₀. So that's the result of solving this problem.
The actual molecular formula of azulene is C₁₀H₈.
Answer:
The final pressure of the gas mixture after the addition of the Ar gas is P₂= 2.25 atm
Explanation:
Using the ideal gas law
PV=nRT
if the Volume V = constant (rigid container) and assuming that the Ar added is at the same temperature as the gases that were in the container before the addition, the only way to increase P is by the number of moles n . Therefore
Inicial state ) P₁V=n₁RT
Final state ) P₂V=n₂RT
dividing both equations
P₂/P₁ = n₂/n₁ → P₂= P₁ * n₂/n₁
now we have to determine P₁ and n₂ /n₁.
For P₁ , we use the Dalton`s law , where p ar1 is the partial pressure of the argon initially and x ar1 is the initial molar fraction of argon (=0.5 since is equimolar mixture of 2 components)
p ar₁ = P₁ * x ar₁ → P₁ = p ar₁ / x ar₁ = 0.75 atm / 0.5 = 1.5 atm
n₁ = n ar₁ + n N₁ = n ar₁ + n ar₁ = 2 n ar₁
n₂ = n ar₂ + n N₂ = 2 n ar₁ + n ar₁ = 3 n ar₁
n₂ /n₁ = 3/2
therefore
P₂= P₁ * n₂/n₁ = 1.5 atm * 3/2 = 2.25 atm
P₂= 2.25 atm
Ksp - solubility product constant is equivalent to equilibrium constant, except this constant is used to determine the solubility of ions of a solid in a solution.
ksp is the product of the soluble ions in the compound. Higher the ksp value, higher the degree of solubility.
ZnCO₃ (s) ---> Zn²⁺ (aq) + CO₃²⁻ (aq)
n n
ksp = [Zn²⁺][CO₃²⁻]
In the equation equal amounts of ions Zn²⁺ and CO₃²⁻ ions are soluble.
amount of ions soluble = n
ksp is therefore equal to;
ksp = n x n
ksp = n²
ksp = 1 * 10⁻¹⁰ M
therefore
1 * 10⁻¹⁰ M = n²
n = 1 x 10⁻⁵ M
therefore concentration of CO₃²⁻ = 1 x 10⁻⁵ M
<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g