Answer :
(a) displacement reaction
(b) combination reaction
(c) disproportionation reaction
(d) displacement reaction
Explanation :
(a) The given balanced chemical reaction is,

This reaction is a single replacement reaction or displacement in which the the more reactive element (Fe) replace the less reactive element (H).
(b) The given balanced chemical reaction is,

This reaction is a combination reaction in which the two reactants molecule combine to form a large molecule or single product.
(c) The given balanced chemical reaction is,

This reaction is a disproportionation reaction in which the chemical species gets oxidized and reduced simultaneously. It is also considered as a redox reaction.
(d) The given balanced chemical reaction is,

This reaction is a single replacement reaction or displacement in which the the more reactive element (Ag) replace the less reactive element (Pt).
Answer:
NH₃/NH₄Cl
Explanation:
We can calculate the pH of a buffer using the Henderson-Hasselbalch's equation.
![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
If the concentration of the acid is equal to that of the base, the pH will be equal to the pKa of the buffer. The optimum range of work of pH is pKa ± 1.
Let's consider the following buffers and their pKa.
- CH₃COONa/CH3COOH (pKa = 4.74)
The optimum buffer is NH₃/NH₄Cl.
Answer:
well I think the answer is it depends on the friction
Answer:
1.73 atm
Explanation:
Given data:
Initial volume of helium = 5.00 L
Final volume of helium = 12.0 L
Final pressure = 0.720 atm
Initial pressure = ?
Solution:
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
P₁ × 5.00 L = 0.720 atm × 12.0 L
P₁ = 8.64 atm. L/5 L
P₁ = 1.73 atm
Answer:
The pH of the solution is 8.
Explanation:
To which options are correct, let us determine the concentration of the hydroxide ion, [OH-] and the pH of the solution. This is illustrated below:
1. The concentration of the hydroxide ion, [OH-] can be obtained as follow:
pOH = –Log [OH-]
pOH = 6
6 = –Log [OH-]
–6 = Log [OH-]
[OH-] = Antilog (–6)
[OH-] = 1x10^–6 mol/L
2. The pH of the solution can be obtained as follow:
pH + pOH = 14
pOH = 6
pH + 6 = 14
pH = 14 – 6
pH = 8.
From the calculations made above,
[OH-] = 1x10^–6 mol/L
pH = 8.
Therefore, the correct answer is:
The pH of the solution is 8