Answer:
Explanation:
Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.
Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
ΔS =S(products) -S(reactants)
Where ΔS is the change of entropy in a reactions
a. ΔS = (2) - (2+1) = -1
b. ΔS = (1+1) -(1) = 1
c. ΔS = (1+2) - (1) = 2
d. ΔS = (2) - (2+1) = -1
e. ΔS = (1) - (1) = 0
ΔS is negative for reaction a. and d.
The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment.
<u>Answer:</u> The chemical equations and equilibrium constant expression for each ionization steps is written below.
<u>Explanation:</u>
The chemical formula of carbonic acid is
. It is a diprotic weak acid which means that it will release two hydrogen ions when dissolved in water
The chemical equation for the first dissociation of carbonic acid follows:

The expression of first equilibrium constant equation follows:
![Ka_1=\frac{[H^+][HCO_3^{-}]}{[H_2CO_3]}](https://tex.z-dn.net/?f=Ka_1%3D%5Cfrac%7B%5BH%5E%2B%5D%5BHCO_3%5E%7B-%7D%5D%7D%7B%5BH_2CO_3%5D%7D)
The chemical equation for the second dissociation of carbonic acid follows:

The expression of second equilibrium constant equation follows:
![Ka_2=\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}](https://tex.z-dn.net/?f=Ka_2%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BHCO_3%5E-%5D%7D)
Hence, the chemical equations and equilibrium constant expression for each ionization steps is written above.