Answer:
C
green traveled les distance but still ended up in the same location as red
Answer:
The answer is: 51.8 g (86% of serving size)
Explanation:
In order to solve the problem, we have to first determine the number of moles there are in 11.0 g of sucrose. Sucrose has a molecular weight of 342 g (we calculate this from the molar mass of the elements : 12 x 12 g/mol C + 22 x 1 g/mol H + 11 x 16 g/mol O). So, we divide the mass (11.0 g) into the molecular weight of sucrose:
11.0 g sucrose x 1 mol/342 g sucrose= 0.032 mol
We have 0.032 mol of sucrose in a serving of 60 g. But we need less moles (0.0278 mol):
0.032 mol ------------ 60 g serving
0.0278 mol------------ x= 0.0278 mol x 60 g serving/0.032 mol
x= 51.8 g
So, lesser than 1 serving of 60 g must be eaten to consume 0.0278 mol os sucrose. Exactly, 51.8 g (which stands for a 86% of the serving size).
B. Electrical energy is produced from oxidation reactions.
I don't have an explanation for this though. Do you need one? I can probably look it up.
Answer : The enthalpy change during the reaction is -6.48 kJ/mole
Explanation :
First we have to calculate the heat gained by the reaction.

where,
q = heat gained = ?
m = mass of water = 100 g
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 23.4 kJ
n = number of moles barium chloride = 

Therefore, the enthalpy change during the reaction is -6.48 kJ/mole