Answer: The molar concentration of sulfuric acid in the original sample is 1.943 M
Explanation:
To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Now to calculate the molarity of original solution:


Thus the molar concentration of sulfuric acid in the original sample is 1.943 M
Answer:
0.363g citric acid
Explanation:
Sodium hydroxide (NaOH) reacts with acids, thus:
NaOH + H⁺ → H₂O + Na⁺
The volume of titration is:
18.39mL - 0.73mL = 17.66mL
Moles of this volume in 0.107M NaOH are:
0.01766L × (0.107 mol / L) = 0.00189mol NaOH ≡ mol citric acid<em> -Assuming the only acid in pear juice is citric acid-</em>
As molar mass of citric acid is 192.124g/mol:, Mass of citric acid is:
0.00189mol citric acid × (192.124g / mol) = <em>0.363g citric acid</em>
I hope it helps!
Answer:
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin
Explanation:
Step 1: Data given
Pressure = 550 torr
The heat of vaporization of water is 40.7 kJ/mol.
Step 2: Calculate boiling point
⇒ We'll use the Clausius-Clapeyron equation
ln(P2/P1) = (ΔHvap/R)*(1/T1-1/T2)
ln(P2/P1) = (40.7*10^3 / 8.314)*(1/T1 - 1/T2)
⇒ with P1 = 760 torr = 1 atm
⇒ with P2 = 550 torr
⇒ with T1 = the boiling point of water at 760 torr = 373.15 Kelvin
⇒ with T2 = the boiling point of water at 550 torr = TO BE DETERMINED
ln(550/760) = 4895.4*(1/373.15 - 1/T2)
-0.3234 = 13.119 - 4895.4/T2
-13.4424= -4895.4/T2
T2 = 364.2 Kelvin = 91 °C
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Answer: Option (5) is the correct answer.
Explanation:
An ionic bond is formed by transfer of electrons between the two chemically combining atoms. Whereas a covalent bond is defined as the bond formed by sharing of electrons between the two chemically combining atoms.
When electronegativity difference is from 0.0 to 0.4 then bond formed between the two atoms is non-polar covalent in nature.
When electronegativity difference is greater than 0.4 and less than 1.7 then bond between the two atoms is a polar covalent bond.
When electronegativity difference is 1.7 or greater than the bond formed is ionic in nature.
Therefore, electronegativity difference of the given species is as follows.
Si-P = 2.1 - 1.8 = 0.3
Si-Cl = 3.0 - 1.8 = 1.2
Si-S = 2.5 - 1.8 = 0.7
Thus, we can conclude that given bonds are placed in order of increasing ionic character as follows.
Si-P < Si-S < Si-Cl