Answer:
Following are the answer to this question:
Explanation:
In the given question information is missing, that is equation which can be defined as follows:

- Growing temperatures may change its connection to just the way which consumes thermal energy in accordance with Le chatelier concepts Potential connection is endothermic. Answer: shifts to the right
-
Kc are described as a related to the concentration by the intensity of both the reaction for each phrase which reaches a power equal towards its stoichiometric equation coefficient Kc = \frac{product}{reactant}
It increases [product] but reduces [reactant] Therefore, Kc increases
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
25.99mL is the volume internal volume of the flask
Explanation:
<em>To complete the question:</em>
<em>The temperature of the water was measured to be 21ºC. Use this data to find the internal volume of the stoppered flask</em>
<em />
The flask was filled with water, that means the internal volume of the flask is equal to the volume that the water occupies.
To find the volume of the water you need to find the mass and by the use of density of water at 21ºC (0.997992g/mL), you can find the volume of the flask, thus:
Mass water = Mass filled flask - Mass of clean flask
Mass water = 60.167g - 34.232g
Mass water = 25.935g of water.
To convert this mass to volume:
25.935g × (1mL / 0.997992g) =
<h3>25.99mL is the volume internal volume of the flask</h3>
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.
<span> Mg(OH)2(s) + 2HCl(aq) yield MgCl2(aq) + 2H2O(l)
grams HCl required = (50.6 grams Mg(OH)2) * (1 mol Mg(OH)2 / 58.3197 grams Mg(OH)2) * (2 mol HCl / 1 mol Mg(OH)2) * (36.453 grams HCl / 1 mol HCl) = 63.26 grams HCl required
Since there are only 45.0 grams HCl, then HCl is the limiting reactant.
theoretical yield MgCl2 = (45.0 grams HCl) * (1 mol HCl / 36.453 grams HCl) * (1 mol MgCl2 / 2 mol HCl) * (95.211 grams MgCl2 / 1 mol MgCl2) = 58.6 grams MgCl2 </span>