Answer:
Reactions 1, 3 and 5
Explanation:
First thing's first, let's ensure that all the reactions given are balanced. This is given as;
CO(g) + 1/2 O2(g )→ CO2(g)
Li(s) + 1/2 F2(l) → LiF(s)
C(s) + O2(g) → CO2(g)
CaCO3(g) → CaO + CO2(g)
2Li(s) + F2(g) → 2LiF(s)
For the condition to be valid;
- There is by convention 1 mol of product made. This means we eliminate reactions with more than one mole of compound formed. This eliminates reaction 5.
- The lements haveto be in their state at room temperature. Fluorine is a gas, not a liquid, at room temperature ans pressure, so 2 is not a correct answer.
This leaves us with reactions 1, 3 and 5 as the correct reactions that satisify the condition.
Answer: 100.
Explanation:
1) The subscripts to the right of each element (symbol) in the chemical formula tells the number of atoms of that element present in one unit formula.
2) The unit formula of C₄H₄S₂ is equal to 1 molecule.
3) Therefore, there are 4 carbon atoms, 4 hydrogen atoms and 2 sulfur atoms in each molecule of C₄H₄S₂.
4) Then, you just have to multiply the corresponding subscript of the element times the number of molecules (25 in this case) to find the number of atoms of that kind.
5) These are the calculations for each element in the molecule C₄H₄S₂.
i) C: 4 × 25 = 100
ii) H: 4 × 25 = 100
iii) S: 2 × 25 = 50.
6) The question is about H only, so the answer is that there are 100 hydrogen atoms in 25 molecules of C₄H₄S₂.
Answer: the heat-sensitive glassware that were given are : Volumetric and Graduated cylinder.
Explanation:glass material that reacts to ambient temperatures radiated off of other surfaces like hands or water is known as heat sensitive glassware. They are not meant to be heated and could shatter if exposed to a heat source. Examples from the video includes Volumetric and Graduated cylinder. Hope this helps. Thanks.
Pure water does
not have enough ions to conduct electricity. A mixture of metals such as iron,
zinc and copper in the wet soil can trigger electrolysis that requires excess
energy in the form of over potential to conduct electricity. The excess energy
is needed due to limited self-ionization of water. The wet soil then can
conduct current when positive and negative ions are present. The water ions begin
to flow from anode (positive electrode) to cathode (negative electrode) to be oxidize
and produce electricity.
<span> </span>
The ionic equation is as below
Ca^2+(aq) + SO4^2-(aq) ---> CaSO4(s)
EXPLANATION
K2SO4(aq) +Cai2(aq) ---> CaSO4(s) + Ki (aq)
ionic equation
= 2K^+(aq) + SO4^2-(aq) + Ca^2+(aq) + 2i^-(aq) --->CaSO4(s) + 2K^+(aq) +2 i^-(aq)
cancel the spectator ions that is 2k^+ and 2i^-
The net ionic equation is therefore
= Ca^2+(aq) + SO4^2-(aq) ----> CaSO4(s)