answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
il63 [147K]
2 years ago
13

Consider the reaction. X ( g ) + Y ( g ) − ⇀ ↽ − Z ( g ) K p = 1.00 at 300 K In which direction will the net reaction proceed fo

r the initial conditions [ X ] = [ Y ] = [ Z ] = 1.0 M? net reaction proceeds to the right net reaction proceeds to the left reaction is at equilibrium In which direction will the net reaction proceed for the initial conditions P X = P Z = 1.0 atm, P Y = 0.50 atm? reaction is at equilibrium net reaction proceeds to the left net reaction proceeds to the right
Chemistry
1 answer:
marta [7]2 years ago
4 0

Answer:

Explanation:

We have in this question the equilibrium

X ( g ) + Y ( g ) ⇆  Z ( g )

With the equilibrium contant Kp = pZ/(pX x pY)

The moment we change the concentration of Y, we are changing effectively the partial pressure of Y since pressure and concentration are directly proportional

pV = nRT ⇒ p = nRT/V and n/V is molarity.

Therefore we can calculate the reaction quotient Q

Qp = pZ/(pX x pY) = 1/ 1  x 0.5 atm = 2

Since Qp is greater than Kp the system proceeds from right to left.

We could also arrive to the same conclusion by applying LeChatelier´s principle which states that any disturbance in the equilibrium, the system will react in such a way to counteract the change to restore the equilibrium. Therefore, by having reduced the pressure of Y the system will react favoring the reactants side increasing some of the y pressure until restoring the equilibrium Kp = 1.

You might be interested in
0.9775 grams of an unknown compound is dissolved in 50.0 ml of water. Initially the water temperature is 22.3 degrees Celsius. A
elena-14-01-66 [18.8K]

Answer:

The enthlapy of solution is -55.23 kJ/mol.

Explanation:

Mass of water = m

Density of water = 1 g/mL

Volume of water = 50.0 mL

m = Density of water × Volume of water = 1 g/mL × 50.0 mL=50.0 g

Change in temperature of the water ,ΔT= 27.0°C - 22.3°C = 4.7°C

Heat capacity of water,c =4.186 J/g°C

Heat gained by the water when an unknown compound is dissolved be Q

Q= mcΔT

Q=50.0 g\times 4.186 J/g^oC\times 4.7^oC=983.71 J

heat released when 0.9775 grams of an unknown compound is dissolved in water will be same as that heat gained by water.

Q'=-Q

Q'= -983.71 J =-0.98371 kJ

Moles of unknown compound = \frac{0.9975 g}{56 g/mol}=0.01781 mol

The enthlapy of solution :

\frac{Q'}{moles}

=\frac{-0.98371 kJ}{0.01781 mol}=-55.23 kJ/mol

The enthlapy of solution is -55.23 kJ/mol.

8 0
2 years ago
If South America were not there, explain how the direction of South equatorial current would be different
forsale [732]

Explanation:

South America land mass serves as a deflector for the South equatorial current. This deflection the current causes them to move in a different direction. If the Continent were not present the direction of the South equatorial current would not change and it would continue to flow in the west.

7 0
2 years ago
If you add 25.0 mL of water to 125 mL of a 0.150 M LiOH solution, what will be the molarity of the resulting diluted solution?
Alborosie

Concentration is the number of moles of solute in a fixed volume of solution

Concentration(c) = number of moles of solute(n) / volume of solution (v)

25.0 mL of water is added to 125 mL of a 0.150 M LiOH solution and solution becomes more diluted.

original solution molarity - 0.150 M

number of moles of LiOH in 1 L - 0.150 mol

number of LiOH moles in 0.125 L  - 0.150 mol/ L x 0.125 L = 0.01875 mol

when 25.0 mL is added the number of moles of LiOH will remain constant but volume of the solution increases

new volume -  125 mL + 25 mL = 150 mL

therefore new molarity is

c = 0.01875 mol / 0.150 L  = 0.125 M

answer is 0.125 M

7 0
2 years ago
Consider the picture of a gas pump. Which type of gasoline has the highest percentage of octane (the main component of gasoline)
Readme [11.4K]

Answer:

premium: 91 octane rating

Explanation:

Octane number refers to the percentage or volume fraction of isooctane in a fuel.

The octane number gives a picture of how safe a fuel is for an engine. The higher the octane rating the lesser the tendency of the fuel to cause knocking of the engine.

The type of gasoline with the highest percentage of octane among the options is premium.

5 0
2 years ago
Read 2 more answers
Suppose that on a hot and sticky afternoon in the spring, a tornado passes over the high school. If the air pressure in the lab
uranmaximum [27]

The answer is B) 230 m3

5 0
1 year ago
Read 2 more answers
Other questions:
  • Jeff has 10 grams of water and 10 grams of vegetable oil in separate containers. Both liquids have a temperature of 24°C. Jeff h
    12·2 answers
  • Write an equation for the formation of bf3(g) from its elements in their standard states.
    13·1 answer
  • How many significant figures the measurement have 56.0g 0.0004m 1003ml 0.0350s
    13·1 answer
  • Suppose a thin sheet of zinc containing 0.2 mol of the metal is completely converted in air to zinc oxide (zno) in one month. ho
    12·2 answers
  • Consider the balanced chemical reaction below and determine the percent yield of sodium bromide if 2.36 moles of iron(iii) bromi
    7·2 answers
  • Substitution of an amino group on the para position of acetophenone shifts the cjo frequency from about 1685 to 1652 cm−1 , wher
    14·1 answer
  • Suppose that ammonia, applied to a field as a fertilizer, is washed into a farm pond containing 3.0 × 106 L of water. If the pH
    8·1 answer
  • The composition of dry air at sea level is 78.03% N2, 20.99% O2, and 0.033% CO2 by volume. (a) calculate the average molar mass
    12·1 answer
  • Increasing the concentration of a reactant speeds up a reaction.<br> True<br> False
    12·1 answer
  • Match the action to the effect on the equilibrium position for the reaction N2(g) + 3H2(g) ⇌ 2NH3(g). Match Term Definition Remo
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!