570/8.5=67.0 58... you only have to take the natural part, si the answer is 67 students
No of moles of naoh = 2.40 ÷ (23+16+1) = 0.06mol
no of moles of na2co3 = 0.06 ÷ 2 = 0.03mol
mass of na2co3 = 0.03 × (23×2+12+16×3) = 0.03 × 106 = 3.18g
The correct answer is Hot water increases the collision rate of molecules, causing the reaction to occur faster.
Explanation:
Temperature is directly related to the kinetic energy or movement of molecules in a substance. In this context, a higher temperature leads to more kinetic energy or more collision between molecules. At the same time, a chemical reaction involves molecules of two or more substances colliding and creating bonds to form new substances. This implies an increase in temperature means molecules colliding faster, new substances forming in a shorter time, and therefore a faster chemical reaction. According to this, the first answer is correct.
Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!
Answer : The partial pressure of
and
are, 84 torr and 778 torr respectively.
Explanation : Given,
Mass of
= 15.0 g
Mass of
= 22.6 g
Molar mass of
= 197.4 g/mole
Molar mass of
= 32 g/mole
First we have to calculate the moles of
and
.

and,

Now we have to calculate the mole fraction of
and
.

and,

Now we have to partial pressure of
and
.
According to the Raoult's law,

where,
= partial pressure of gas
= total pressure of gas
= mole fraction of gas


and,


Therefore, the partial pressure of
and
are, 84 torr and 778 torr respectively.