Explanation:
require an emergency support immediately
We can predict the order of the elements given above according from the highest to lowest first ionization energies by using the trends in a periodic table. For elements in a family, the ionization energy decreases as it goes down. Therefore, the correct order would be Be, Mg, Ca, Sr.
Answer:
The partial pressure of SO₃ is 82.0 atm
Explanation:
The equilibrium constant Kp is equal to <em>the equilibrium pressure of the gaseous products raised to the power of their stoichiometric coefficients divided by the equilibrium pressure of the gaseous reactants raised to the power of their stoichiometric coefficients</em>.
For the reaction,
2 SO₂(g) + O₂(g) → 2 SO₃(g)
![Kp = 0.345 = \frac{(pSO_{3})^{2} }{(pSO_{2})^{2} \times pO_{2} }\\pSO_{3} = \sqrt[]{0.345 \times (pSO_{2})^{2} \times pO_{2} } \\pSO_{3} = \sqrt[]{0.345 \times (35.0)^{2} \times 15.9 } \\pSO_{3} = 82.0 atm](https://tex.z-dn.net/?f=Kp%20%3D%200.345%20%3D%20%5Cfrac%7B%28pSO_%7B3%7D%29%5E%7B2%7D%20%7D%7B%28pSO_%7B2%7D%29%5E%7B2%7D%20%5Ctimes%20pO_%7B2%7D%20%7D%5C%5CpSO_%7B3%7D%20%3D%20%5Csqrt%5B%5D%7B0.345%20%5Ctimes%20%28pSO_%7B2%7D%29%5E%7B2%7D%20%5Ctimes%20pO_%7B2%7D%20%7D%20%5C%5CpSO_%7B3%7D%20%3D%20%5Csqrt%5B%5D%7B0.345%20%5Ctimes%20%2835.0%29%5E%7B2%7D%20%5Ctimes%2015.9%20%7D%20%5C%5CpSO_%7B3%7D%20%3D%2082.0%20atm)
Answer:
Less than
Explanation:
The process of dissolution occurs as a kind of "tug of war". On one side are the solute-solute and solvent-solvent interaction forces, while on the other side are the solute-solvent forces.
Only when the solute-solvent forces are strong enough to overcome the pre-mixing forces do they overcome the "tug of war", and thus dissolution occurs.
Thus, it is concluded that the interaction forces between solute particles and solvent particles before they are combined are less than the interaction forces after dissolution.
Answer:
0.28m/s
Explanation:
Speed is defined as the distance travelled per unit of time. The speed of the turtle is 1.0km/h. Thus, to find the speed in m/s, we need to convert km to m (1km is 1000m), and h to s (1h = 3600s).
<em>Converting units:</em>
1.0km/h * (1000m / 1km) * (1h / 3600s) = 0.28m/s.
The speed of the turtle in meter per second is 0.28m/s