<h3>Answer:</h3>
Mass = 96.47 g
<h3>
Solution:</h3>
Data Given:
M.Mass = 28.97 g.mol⁻¹
Moles = 3.33 mol
Mass = ??
Formula Used:
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting values,
Mass = 3.33 mol × 28.97 g.mol⁻¹
Mass = 96.4701 g
Rounding to four significant numbers,
Mass = 96.47 g
Answer:
The correct options are "b" and "c". A further explanation is given below.
Explanation:
- Saturation temperature can be determined where this enough of some other solution that is incorporated like that can be absorbed by a solvent.
- The formulation is saturated at this same stage, so Ksp could be computed. As well as the solid throughout solution should continue to appear upon freezing below a certain temperature.
The other options offered aren't relevant to the situation described. So the equivalents above are the right ones.
Problem One (left)
This is just a straight mc deltaT question
<em><u>Givens</u></em>
m = 535 grams
c = 0.486 J/gm
tf = 50
ti = 1230
Formula
E = m * c * (ti - tf)
Solution
E = 535 * 0.486 * ( 1230 - 50)
E = 535 * 0.486 * (1180)
E = 301077
Answer: A
Problem Two
This one just requires that you multiply the two numbers together and cut it down to 3 sig digits.
E = H m
H = 2257 J/gram
m = 11.2 grams
E = 2257 * 11.2
E = 25278 to three digits is 25300 Joules. Anyway it is the last one.
Three
D and E are both incorrect for the same reason. The sun and stars don't contain an awful lot of Uranium (1 part of a trillion hydrogen atoms). It's too rare. The other answers can all be eliminated because U 235 is pretty stable in its natural state. It has a high activation complex.
Your best chance would be enriched Uranium (which is another way of saying refined uranium). That would be the right environment. Atomic weapons and nuclear power plants (most) used enriched Uranium. You can google "Little Boy" if you want to know more.
Answer: B
Four
The best way to think about this question is just to get the answer. Answer C.
A: incorrect. Anything sticking together implies a larger and larger result. Gases don't work that way. They move about randomly.
B: Wrong. Heat and Temperature especially depend on movement. Stopping is not permitted. If a substance's molecules stopped, the substance would experience an extremely uncomfortable temperature drop.
C: is correct because the molecules neither stop nor do they stick. The hit and move on.
D: Wrong. An ax splitting something? That is not what happens normally and not with ordinary gases. It takes more energy that mere collisions or normal temperatures would provide to get a gas to split apart.
E: Wrong. Same sort of comment as D. Splitting is not the way these things work. They bounce away as in C.
Five
Half life number 1 would leave 0.5 grams behind.
Half life number 2 would leave 1/2 of 1/2 or 1/4 of the number of grams left.
Answer: 0.25
Answer C
The formula for chromium (III) phosphate trihydrate is CrPO4- 3H20. This compound if in the anhydrous state, exists as a green crystal whereas a hydrated form violet crystal. The formula for cobalt(II) phosphate octahydrate is Co3(PO4)2•8H2O.
Check the attached file for the answer.