Answer is: 0,133 mol/ l· atm.
T(chlorine) = 10°C = 283K.
p(chlorine) = 1 atm.
V(chlorine) = 3,10 l.
R - gas constant, R = 0.0821 atm·l/mol·K.
Ideal gas law: p·V = n·R·T
n(chlorine) = p·V ÷ R·T.
n(chlorine) = 1atm · 3,10l ÷ 0,0821 atm·l/mol·K · 283K = 0,133mol.
Henry's law: c = p·k.
k - <span>Henry's law constant.
</span>c - solubility of a gas at a fixed temperature in a particular solvent.
c = 0,133 mol/l.
k = 0,133 mol/l ÷ 1 atm = 0,133 mol/ l· atm.
Answer:
a
Explanation:
the others are rude, and rather support this, while a helps to support the ending of white privlige
Hello there!
To determine the fraction of the hydrogen atom's mass that is in the nucleus, we have to keep in mind that
a Hydrogen atom has 1 proton and 1 electron.
Protons are in the nucleus while electrons are in electron shells surrounding the nucleus.
The mass of the nucleus will be equal to the mass of 1 proton and we can express the fraction as follows:

So, the fraction of the hydrogen atom's mass that is in the nucleus is
0,9995. That means that almost all the mass of this atom is at the nucleus.
Have a nice day!
The correct reaction equation is:

Answer:
b) 1 mole of water is produced for every mole of carbon dioxide produced.
Explanation: <u>CONVERT EVERYTHING TO MOLES OR VOLUME, THEN COMPARE IT WITH THE COMPOUND'S STOICHIOMETRY IN CHEMICAL EQUATION.</u>
a) <u>22.4 L of
gas</u> is produced only when <u>
L of
</u> is reacted with 22.4 L of
. So it is wrong.
b) Since in the chemical equation the stoichiometric coefficient of
and
are same so the number of moles or volume of each of them will be same whatever the amount of reactants taken. <u>Therefore it is correct option.</u>
c)
molecules is equal 1 mole of
if produced then 3 moles of
is required, which is not given in the option. So it is wrong.
d) 54 g of water or 3 moles of
(<em>Molecular Weight of water is 18 g</em>) is produced when 3 moles of
is used but in this option only one mole of
is given. So it is wrong.
Answer: Reaction 1 is non spontaneous.
Explanation:
According to Gibb's equation:

= Gibbs free energy
= enthalpy change
= entropy change
T = temperature in Kelvin
When
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
For the given reaction 1:

As for the reaction 1 , the value of Gibbs free energy is positive and thus the reaction 1 is non spontaneous.