Answer:
CaF2 > Ag2CO3 > Ag3(PO4)2 > Ba3(PO4)2
Explanation:
Ksp which is solubility product konstant shows equilibrium between a solids and its respective ions in a solution. And the lower it is the less soluble the ion compound will be. And for CaF2 we have the highest konstant and for Ba3(PO4)2 we have it the lowest.
<u>Answer:</u> The enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CH_4(g))})]-[(1\times \Delta H^o_f_{(C(s))})+(2\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CH_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-74.9))]-[1\times 0)+(2\times 0)]\\\\\Delta H^o_{rxn}=-74.9kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-74.9%29%29%5D-%5B1%5Ctimes%200%29%2B%282%5Ctimes%200%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-74.9kJ)
Hence, the enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
Answer:
The element is Na
Explanation:
Ionization energy is the energy needed to release the last electron from an atom in its ground state to the gaseous state. It is a periodic property that increases as we go through the periods of the periodic table, but decreases if we move in groups. Sodium has thr ionic radius (another periodic property) that is too large, making it easier to release the electron away, since it is too far from the nucleus.
Explanation:
The given data is as follows.
T =
= (120 + 273.15)K = 393.15 K,
As it is given that it is an equimolar mixture of n-pentane and isopentane.
So,
= 0.5 and
= 0.5
According to the Antoine data, vapor pressure of two components at 393.15 K is as follows.
(393.15 K) = 9.2 bar
(393.15 K) = 10.5 bar
Hence, we will calculate the partial pressure of each component as follows.

= 
= 4.6 bar
and, 
= 
= 5.25 bar
Therefore, the bubble pressure will be as follows.
P =
= 4.6 bar + 5.25 bar
= 9.85 bar
Now, we will calculate the vapor composition as follows.

= 
= 0.467
and, 
= 
= 0.527
Calculate the dew point as follows.
= 0.5,
= 0.5


= 0.101966
P = 9.807
Composition of the liquid phase is
and its formula is as follows.

= 
= 0.5329

= 
= 0.467