Answer:
The partial pressure of neon in the vessel was 239 torr.
Explanation:
In all cases involving gas mixtures, the total gas pressure is related to the partial pressures, that is, the pressures of the individual gaseous components of the mixture. Put simply, the partial pressure of a gas is the pressure it exerts on a mixture of gases.
Dalton's law states that the total pressure of a mixture of gases is equal to the sum of the pressures that each gas would exert if it were alone. Then:
PT= P1 + P2 + P3 + P4…+ Pn
where n is the amount of gases present in the mixture.
In this case:
PT=PN₂ + PAr + PHe + PNe
where:
- PT= 987 torr
- PN₂= 44 torr
- PAr= 486 torr
- PHe= 218 torr
- PNe= ?
Replacing:
987 torr= 44 torr + 486 torr + 218 torr + PNe
Solving:
987 torr= 748 torr + PNe
PNe= 987 torr - 748 torr
PNe= 239 torr
<u><em>The partial pressure of neon in the vessel was 239 torr.</em></u>
The answer is ................................ c
I'm not 100% sure on this, but I would go with C) NaCl.
NaCl is a salt, and that is used to melt the ice on the roads. Hope this helps!
<span>Let's assume
that the F</span>₂ gas has ideal gas behavior.
<span>
Then we can use ideal gas formula,
PV = nRT
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol</span>⁻¹ K⁻<span>¹) and T is temperature in Kelvin.</span>
Moles = mass / molar mass
Molar mass of F₂ = 38 g/mol
Mass of F₂ = 76 g
Hence, moles of F₂ = 76 g / 38 g/mol = 2 mol
<span>
P = ?
V = 1.5 L = 1.5 x 10</span>⁻³ m³
n = 2 mol
R = 8.314 J mol⁻¹ K⁻<span>¹
T = -37 °C = 236 K
By substitution,
</span>
P x 1.5 x 10⁻³ m³ = 2 mol x 8.314 J mol⁻¹ K⁻¹ x 236 K
p = 2616138.67 Pa
p = 25.8 atm = 26 atm
Hence, the pressure of the gas is 26 atm.
Answer is "a".
<span>
</span>
Answer:
Autotrophs are known as producers because they are able to make their own food from raw materials and energy. Examples include plants, algae, and some types of bacteria. Heterotrophs are known as consumers because they consume producers or other consumers. Dogs, birds, fish, and humans are all examples of heterotrophs
Explanation:
So they are heterotrophs
Ticks are tiny parasites that feed on the blood of their hosts (humans and animals) in order to survive and advance to the next life cycle stage.