Answer:
IHD = 0
Explanation:
Given that
C₆H₁₅N
Number of carbon atoms(n) = 6
Number of hydrogen atoms(x') = 15
Number of nitrogen atoms = 1
There is nitrogen atoms then x = x' -1
The index of hydrogen deficiency given as

So


IHD = 0
The index of hydrogen deficiency is zero.
Answer:
The Michaelis‑Menten equation is given as
v₀ = Kcat X [E₀] X [S] / (Km + [S])
where,
Kcat is the experimental rate constant of the reaction; [s] is the substrate concentration and
Km is the Michaelis‑Menten constant.
Explanation:
See attached image for a detailed explanation
Lets organise the data given in the question
[ClO₂] (m) [OH⁻] (m) initial rate (m/s)
<span>0.060 0.030 0.0248
</span><span> 0.020 0.030 0.00276
</span><span> 0.020 0.090 0.00828
rate equation as follows
rate = k [</span>ClO₂]ᵃ [OH⁻]ᵇ
where k - rate constant
we need to find order with respect to ClO₂ therefore lets take the 2 equations where OH⁻ is constant.
1) 0.00276 = k [0.020]ᵃ[0.030]ᵇ
2) 0.0248 = k [0.060]ᵃ[0.030]ᵇ
divide first equation from the second
0.0248/0.00276 = [0.060/0.020]ᵇ
8.99 = 3ᵇ
8.99 rounded off to 9
9 = 3ᵇ
b = 2
order with respect to ClO₂ is 2
To find the molar mass<span> of </span>Ba(NO3)2<span>, determine the </span>molar masses of all the atoms that form it. The Molar mass for Barium nitrate is <span>261.337 g/mol.</span>
Answer: 1.14
Explanation:

To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate pH of gastric juice:
molarity of
= 0.072
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)

Thus the pH of the gastric juice is 1.14