Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
The answer is isotonic solution. These are solutions where
the solute concentration in the solution and inside the cells are levelled and consequently
water flows consistently. When red blood cells are positioned in an isotonic
solution the cells would always stay the same.
The location of the valence electron or the outermost electron is expressed in quantum numbers. There are five quantum numbers: prinicipal (n), angular momentum (l), magnetic (ms) and magnetic spin (ms) quantum numbers. This is based on Bohr's atomic model where electrons orbit around the nucleus. These electrons are in the orbitals with specific energy levels. Starting from energy level 1 that is closest to the nucleus, the energy level decreases to 2, 3, 4, 5, 6, and 7. These energy level numbers represent the principal quantum number. Within each orbital also contains subshell. From increasing to decreasing order, these subshells are the s, p, d and f subshells. These subshells represent the angular momentum quantum numer. Specifically, s=0, p=1, d=2 and f=3. Therefore, if the electron is in the orbital 5p, the quantum number would be: 5, 1. Applying these to the choices, the correct pairing would be:
2p: n=2. l=1
3d: n=3, l=2
2s: n=2. l=0
4f: n=4. l=3
1s: n=1, l=0
Answer:
2.01
Explanation:
The effusion is the passage of the molecules by a small hole by a difference of pressure. By Graham's Law, the rate of the effusion is inversely proportional to the square of the molar mass of the compound. Thus,
rateHF/rateHBr = √MHBr /√MHF
MHBr = 81 g/mol
MHF = 20 g/mol
rateHF/rateHBr = √81/√20
rateHF/rateHBr = 2.01
4.658. Accuracy refers to how close the experimental value is to the actual value. Precision is how close a set of data is to one another.