answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
1 year ago
7

Gaseous ICl (0.20 mol) was added to a 2.0 L flask and allowed to decompose at a high temperature:

Chemistry
1 answer:
Ne4ueva [31]1 year ago
8 0

Answer:

The Kc is 1.36 (but this is not an option, may be the options are wrong, or may be I was .. Thanks!)

Explanation:

Let's think all the situation.

               2 ICl(g)   ⇄   I₂(g)    +    Cl₂(g)

Initially      0.20              -               -

Initially I have only 0.20 moles of reactant, and nothing of products. In the reaction, an x amount of compound has reacted.

React          x              x/2               x/2

Because the ratio is 2:1, in the reaction I have the half of moles.

So in equilibrium I will have

           (0.20 - x)          x/2             x/2

Notice that I have the concentration in equilibrium so:

0.20 - x = 0.060

x = 0.14

So in equilibrium I have formed 0.14/2 moles of I₂ and H₂ (0.07 moles)

Finally, we have to make, the expression for Kc and remember that must to be with concentration in M (mol/L).

As we have a volume of 2L, the values must be /2

Kc = ([I₂]/2 . [H₂]/2) / ([ICl]/2)²

Kc = (0.07/2 . 0.07/2) / (0.060/2)²

Kc = 1.225x10⁻³ / 9x10⁻⁴

Kc = 1.36

You might be interested in
A piece of iron metal is heated to 155 degrees C and placed into a calorimeter that contains 50.0 mL of water at 18.7 degrees C.
Korvikt [17]

Answer:

D = 28.2g

Explanation:

Initial temperature of metal (T1) = 155°C

Initial Temperature of calorimeter (T2) = 18.7°C

Final temperature of solution (T3) = 26.4°C

Specific heat capacity of water (C2) = 4.184J/g°C

Specific heat capacity of metal (C1) = 0.444J/g°C

Volume of water = 50.0mL

Assuming no heat loss

Heat energy lost by metal = heat energy gain by water + calorimeter

Heat energy (Q) = MC∇T

M = mass

C = specific heat capacity

∇T = change in temperature

Mass of metal = M1

Mass of water = M2

Density = mass / volume

Mass = density * volume

Density of water = 1g/mL

Mass(M2) = 1 * 50

Mass = 50g

Heat loss by the metal = heat gain by water + calorimeter

M1C1(T1 - T3) = M2C2(T3 - T2)

M1 * 0.444 * (155 - 26.4) = 50 * 4.184 * (26.4 - 18.7)

0.444M1 * 128.6 = 209.2 * 7.7

57.0984M1 = 1610.84

M1 = 1610.84 / 57.0984

M1 = 28.21g

The mass of the metal is 28.21g

3 0
1 year ago
Material A has a small latent heat of fusion. Material B has a large heat of fusion. Which of the following statements is true?
Olin [163]
The correct answer would be the first option. Material A having a smaller latent heat of fusion would mean that it will take only less energy to phase change into the liquid phase. Latent of heat of fusion is the amount of energy needed of a substance to phase change from solid to liquid or liquid to solid.
7 0
1 year ago
Read 2 more answers
What evidence do you have that atoms of certain elements produce a flame of a specific color?
AVprozaik [17]
Light acts as a wave so when you burn a certain element it generates a specific wavelength which represents a specific color light. ^-^
7 0
1 year ago
A student has two samples of NaCl, each one from a different source. Assume that the only potential contaminant in each sample i
bija089 [108]

Answer:

The correct option is;

A. Which sample has the higher purity

Explanation:

The information given relate to the presence of two samples of NaCl, from different sources

The only potential contaminant in each of the sources = KCl

The content of the sample = NaCl

The molar mass of NaCl = 58.44 g/mol

The molar mass of KCl = 74.5513 g/mol

Let the number of moles of KCl in the sample = X

For a given mass of NaCl, KCl mixture, we have;

The molar mass of potassium = 39.0983 g/mol

The molar mass of chlorine = 35.453 g/mol

The molar mass of sodium ≈ 23 g/mol

Therefore;

Each mole of KCl, will yield 35.453 g/mol per 74.5513 g/mol of KCl

While each mole of NaCl will yield 35.453 g/mol per 58.44 g/mol of NaCl

Therefore, the pure sodium chloride sample will yield more chlorine per unit mass of sample.

As such if the two samples have the same mass, the sample with the contaminant of KCl will yield less mass of chlorine per unit mass of the sample, from which the student will be able to tell the purity of the solution.

The sample with the higher purity will yield  a higher mass chlorine per unit mass of the sample.

6 0
2 years ago
Repulsion of electrons within two interacting molecules produces changes in electron distribution. This change in electron distr
ycow [4]

Answer:

D

Explanation:

This explains how two noble gases molecules can have an attractive force between them.

This force is called as van dar Waals forces.

It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .

If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles

6 0
1 year ago
Other questions:
  • A LIQUID HAS THE FOLLOWING PROPERTIES: ONE PHASE, COLORLESS, BOILING POINT 95 TO 97 oC. WHICH OF THE FOLLOWING BEST DESCRIBES A
    8·1 answer
  • What volume of air contains 10.0g of oxygen gas at 273 k and 1.00 atm?
    5·2 answers
  • The acid-dissociation constant at 25.0 °c for hypochlorous acid (hclo) is 3.0 ⋅ 10−8. at equilibrium, the molarity of h3o+ in a
    11·1 answer
  • Gaseous ICl (0.20 mol) was added to a 2.0 L flask and allowed to decompose at a high temperature:
    7·1 answer
  • 3.4 moles of solid CuSO4 is added to 1.8 L of water and allowed to dissolve. Will all the solid dissolve?
    8·1 answer
  • Which of the following substances would release the most amount of heat when they cool from 50oC to 25oC if you started with equ
    8·1 answer
  • Methane and chlorine react to form chloromethane, CH3Cl and hydrogen chloride. When 29.8 g of methane and 40.3 g of chlorine gas
    10·2 answers
  • A given sample of caffeine, C8H10N4O2, has 6.47 x 1022
    8·1 answer
  • Which statement best describes the relationship between the frequency and energy of light?
    13·2 answers
  • A boy lifts a 30N dragon 2 meters above the ground. How much work did the boy do on the dragon?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!