<span>Displaced volume :
</span>Final volume - <span>Initial volume
</span>13.45 mL - 12.00 mL => 1.45 mL
Mass = 4.50 g
Therefore:
density = mass / volume
D = 4.50 / 1.45
<span>D = 3.103 g/mL </span>
Volume = Mass / Density
Volume = 540g / 2.70 g/ml
Volume = 200 ml
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
Answer:
3.02× 10²⁴ atoms
Explanation:
Given data:
Number of nitrogen atoms = ?
Number of moles of N₂O = 2.51 mol
Solution:
1 mole contain 2 mole of nitrogen atoms.
2.51 × 2 = 5.02 mol
According to Avogadro number,
1 mole = 6.022 × 10²³ atoms
5.02 mol × 6.022 × 10²³ atoms / 1 mol
30.2 × 10²³ atoms
3.02× 10²⁴ atoms