Remember that density refers to the "mass per unit volume" of an object.
So, if an object had a mass of 100 grams and a volume of 100 milliliters, the density would be 100 grams / 100 ml.
In the question, water on the surface of the scale would add weight, so the mass of the object that you're weighing would appear to be heavier than it really is. If that happens, you'll incorrectly assume that the density is GREATER than it really is
As an example, suppose that there was 5 ml of water on the surface of the scale. Water has a density of 1 gram per milliliter (1 g/ml) so the water would add 5 grams to the object's weight. If we use the example above, the mass of the object would seem to be 105 grams, rather than 100 grams. So, you would calculate:
density = mass / volume
density = 105 grams / 100 ml
density = 1.05 g/ml
The effect on density would be that it would erroneously appear to be greater
Hope this helps!
Good luck
Answer:
the correct answer is (sp3d2) (d)
Explanation:
Use ideal gas equation: pV = nRT
Now pass n to mass: n = mass / MM .... [MM is the molar mass]
pV = [mass/MM]*RT =>mass/V = [p*MM] / RT and mass / V = density
p= 130 kPa = 130,000 Pa = 130,00 joule / m^3
T = 10.0 ° + 273.15 = 283.15 k
MM of sulfur (S) = 32 g/mol = 32000 kg/mol
density = 130,000 Pa * 32000kg/mol / [8.31 joule / mol*k * 283.15 k] = 1.77*10^6 kg/m^3 = 1.77 g/L ≈ 1.8 g/L
Then, I do not get any of the option choices.
Is it possbile that the pressure is 13.0 kPa instead 130. kPa? If so the answer would be 18 g/L
Note that the mass is not used. You do not need it unless you are asked for the volume, which is not the case.
How it looks. basically the thing that tells you how it change. for example if an ice cube was melted (heat), it only changed physically not chemically as the h20 molecules are still there. however lets say you burn woos— you cant get that would back. its ash now and it has changed chemically.
I believe the correct answer from the choices listed above is the first option. There are about 840 candies present on all vans present. We calculate it by multiplying the number of total passengers by the number of candies each passenger is carrying. Hope this answers the question.