How it looks. basically the thing that tells you how it change. for example if an ice cube was melted (heat), it only changed physically not chemically as the h20 molecules are still there. however lets say you burn woos— you cant get that would back. its ash now and it has changed chemically.
The balanced equation for the above reaction is
HBr + KOH ---> KBr + H₂O
stoichiometry of HBr to KOH is 1:1
HBr is a strong acid and KOH is a strong base and they both completely dissociate.
The number of HBr moles present - 0.25 M / 1000 mL/L x 52.0 mL = 0.013 mol
The number of KOH moles added - 0.50 M / 1000 mL/L x 26.0 mL = 0.013 mol
the number of H⁺ ions = number of OH⁻ ions
therefore complete neutralisation occurs.
Therefore solution is neutral. At 25 °C, when the solution is neutral, pH = 7.
Then pH of solution is 7
Answer:
Molecular formula → PbSO₄ → Lead sulfate
Option c.
Explanation:
The % percent composition indicates that in 100 g of compound we have:
68.3 g of Pb, 10.6 g of S and (100 - 68.3 - 10.6) = 21.1 g of O
We divide each element by the molar mass:
68.3 g Pb / 207.2 g/mol = 0.329 moles Pb
10.6 g S / 32.06 g/mol = 0.331 moles S
21.1 g O / 16 g/mol = 1.32 moles O
We divide each mol by the lowest value to determine, the molecular formula
0.329 / 0.329 = 1 Pb
0.331 / 0.329 = 1 S
1.32 / 0.329 = 4 O
Molecular formula → PbSO₄ → Lead sulfate