the balanced chemical equation for decomposition of HgO is as follows
2HgO --> 2Hg + O₂
stoichiometry of HgO to O₂ is 2:1
number of HgO moles heated are - 3.00 g / 216.59 g/mol = 0.0139 mol
according to stoichiometry of reaction -
number of O₂ moles formed = 0.0139 mol/ 2 = 0.00695 mol
mass of O₂ to be formed - 0.00695 mol x 32.00 g/mol = 0.2224 g
but the actual yield = 0.195 g
percent yield = actual yield / theoretical yield x 100 %
percent yield = 0.195 g / 0.2224 g x 100 % = 87.7 %
answer is 87.7 %
For the basic solution:
11.2 = -log[H+]
[H+] = 6.31 x 10⁻¹²
For the acidic solution:
2.4 = -log[H+]
[H+] = 3.98 x 10⁻³
The difference:
3.98 x 10⁻³ - 6.31 x 10⁻¹²
≈ 4.0 x 10⁻³
The answer is B
Answer:
The correct answer is option C, that is, ΔS and ΔSsurr for the process H2O (s) ⇒ H2O(l) are equal in magnitude and opposite in sign.
Explanation:
The temperature at which solid state of water get transformed into liquid state is termed as the melting point of 0 °C. It can be shown by the reaction:
H2O (s) ⇒ H2O (l)
The degree of randomness of a molecule is known as entropy. With the transformation of ice into liquid state, there is an increase in randomness. Thus, the value of entropy becomes positive as shown:
Entropy change (ΔSsys) = ΔSproduct - ΔSreactant
= (69.9 - 47.89) J mol/K
= 22.0 J mol/K
Therefore, the value of entropy change is positive.
Now the value of entropy for surrounding ΔSsurr will be,
ΔSsurr = -ΔHfusion/T
= -6012 j/mol/273
= -22.0 J/molK
Hence, the value of ΔSsurr and ΔSsys exhibit same magnitude with opposite sign.
Answer:4 days will it take for the snail to get to the garden.
Explanation:
Speed of the snail = 12 feet per day:
Distance between the garden and snail = 48 feet


4 days will it take for the snail to get to the garden.