Answer:
C. 2.000 M C6H12O6
Explanation:
Let us obtain the molarity of the solution.
Molar Mass of C6H12O6 = (12x6) + (12x1) + (16x6) = 72 + 12 + 96 = 180g/mol
Mass of C6H12O6 = 180g
Number of mole = Mass /Molar Mass
Number of mole of C6H12O6 = 180/180 = 1mole
Volume = 500mL = 500/1000 = 0.5L
Molarity = mole /Volume
Molarity = 1/0.5
Molarity = 2M
So the solution will be best labelled as 2M C6H12O6
Answer:
Explanation:
H3PO4(aq) + 3NaOH(aq) → Na3PO4(aq) + 3H2O(l)
mole of NaOH = 23.6 * 10 ⁻³L * 0.2M
= 0.00472mole
let x be the no of mole of H3PO4 required of 0.00472mole of NaOH
3 mole of NaOH required ------- 1 mole of H3PO4
0.00472mole of NaOH ----------x
cross multiply
3x = 0.0472
x = 0.00157mole
[H3PO4] = mole of H3PO4 / Vol. of H3PO4
= 0.00157mole / (10*10⁻³l)
= 0.157M
<h3>The concentration of unknown phosphoric acid is 0.157M</h3>
To answer the question, we assume that the given compound is an ideal gas that at STP, one mole of the substance will occupy 22.4 L. From the given volume, we determine the number of moles of substance.
7.8 L / (22.4 L /mole) = 0.3482 moles of cfa
Then, we multiply this number of moles by the molar weight of cfa which is equal to 88 g/mol.
Multiplying,
weight = (0.3482 moles of cfa) x (88 g/mol) = <em>30.64 grams</em>
Na₂S(aq) + Cd(NO₃)₂(aq) = CdS(s) + 2NaNO₃(aq)
v=25.00 mL
c=0.0100 mmol/mL
M(Na₂S)=78.046 mg/mmol
n(Na₂S)=n{Cd(NO₃)₂}=cv
m(Na₂S)=M(Na₂S)n(Na₂S)=M(Na₂S)cv
m(Na₂S)=78.046*0.0100*25.00≈19.5 mg
Answer:
k = 23045 N/m
Explanation:
To find the spring constant, you take into account the maximum elastic potential energy that the spring can support. The kinetic energy of the car must be, at least, equal to elastic potential energy of the spring when it is compressed to its limit. Then, you have:
(1)
M: mass of the car = 1050 kg
k: spring constant = ?
v: velocity of the car = 8 km/h
x: maximum compression of the spring = 1.5 cm = 0.015m
You solve the equation (1) for k. But first you convert the velocity v to m/s:


The spring constant is 23045 N/m