Explanation:
from the graph study about oxygen content of Earth's atmosphere, we can understand that
1)
4 billions year ago = None, 3 billions year ago = Cyanobacteria and Archaea , 2 and 1 billions year ago = Bacteria and Green algae , 500 Ma = invertebrate fossils started to existence. Early land plants came in to existence around 398 MA that is Devonian. Dinosaurs are came in to existence during Triassic and Jurassic that is around 251 Ma. Man and animals are recent organism came under Holocene that is 11000 years ago.
2)
The first cells on the earth are anaerobic microorganisms, as the CO2 level is too high they survive by using CO2.
3)
Starting around 2.7 billion years ago, photosynthesis by Cyanobacteria and later plants , pumped “OXYGEN” in to the atmosphere. This caused the decline of anaerobic bacteria and allows the diversification of animals as seen in “CAMBRIAN” around 500 millions year ago.
Early vascular plants “CAPTURED” CO2 starting before the Carboniferous period that began around 350 millions year.Leading to lower temperatures and allowing and allowing the seed plants to outcompetes seedless plants.
Modern human activities has raised both “CO2 and METHANE” level in the atmosphere to over leading to higher temperature and extinction of other species.
Answer:
1.3 L.
Explanation:
- Molarity is the no. of moles of solute per 1.0 L of the solution.
<em>M = (no. of moles of CaSO₄)/(Volume of the solution (L))</em>
<em></em>
M = 0.352 M.
no. of moles of CaSO₄ = mass/molar mass = (62.1 g / 136.14 g/mol) = 0.456 mol,
Volume of the solution = ??? L.
∴ (0.352 M) = (0.456 mol)/(Volume of the solution (L))
<em>∴ (Volume of the solution (L) </em>= (0.456 mol)/(0.352 M) = <em>1.296 L ≅ 1.3 L.</em>
This problem handles<em> boiling-point elevation</em>, which means we will use the formula:
ΔT = Kb * m
Where ΔT is the difference of Temperature between boiling points of the solution and the pure solvent (Tsolution - Tsolvent). Kb is the ebullioscopic constant of the solvent (2.64 for benzene), and m is the molality of the solution.
Knowing that benzene's boiling point is 80.1°C, we <u>solve for m</u>:
Tsolution - Tsolvent = Kb * m
80.23 - 80.1 = 2.64 * m
m = 0.049 m
We use the definition of molality to <u>calculate the moles of azulene</u>:
0.049 m = Xmoles azulene / 0.099 kgBenzene
Xmoles azulene = 4.87 x10⁻³ moles azulene
We use the mass and the moles of azulene to<u> calculate its molecular weight</u>:
0.640 g / 4.875 x10⁻³ mol = 130.28 g/mol
<em>A molecular formula that would fulfill that molecular weight</em> is C₁₀H₁₀. So that's the result of solving this problem.
The actual molecular formula of azulene is C₁₀H₈.
Answer : BaS
will be the precipitate which will be formed.
Explanation : When all the three solutions namely;
are mixed together a white precipitate of BaS
is formed as a product in the solution along with the soluble by product of Ammonium nitrate which is
Answer:
a) find attached image 1
b) find attached image 2
Explanation :
The more stable radical is formed by a reaction with smaller bond dissociation energy.
since the bond dissociation for cleavage of the bond to form primary free radical is higher, more energy must be added to form it. This makes primary free radical higher in energy and therefore less stable than secondary free radical.