the balanced chemical equation for the decomposition of H₂O₂ is as follows
2H₂O₂ ---> 2H₂O + O₂
stoichiometry of H₂O₂ to O₂ is 2:1
the number of moles of H₂O₂ decomposed is - 0.250 L x 3.00 mol/L = 0.75 mol
according to stoichiometry the number of O₂ moles is half the number of H₂O₂ moles decomposed
number of moles of O₂ - 0.75 mol / 2 = 0.375 mol
apply the ideal gas law equation to find the volume
PV = nRT
where P - standard pressure - 10⁵ Pa
V - volume
n - number of moles 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - standard temperature - 273 K
substituting the values in the equation
10⁵ Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 8.5 L
volume of O₂ gas is 8.5 L
Answer:
The answer is A (number 1)
Answer:
No, Stephanie is incorrect. Formation of petroleum cannot take place under the presence of oxygen.
Explanation:
Since, the petroleum is fossil product. Fossil fuel are formed under high pressure and temperature with absence of oxygen for longer period. so the way she is performing is completely incorrect. With the presence of oxygen in no way petroleum will be formed. The temperature and pressure should be in different combination for the formation of the petroleum. Along with the layers of sediments to maintain the pressure is required.
an amorphous solid because the particles do not have a regular structure is the answer
Answer:
34.2 g is the mass of carbon dioxide gas one have in the container.
Explanation:
Moles of
:-
Mass = 49.8 g
Molar mass of oxygen gas = 32 g/mol
The formula for the calculation of moles is shown below:
Thus,

Since pressure and volume are constant, we can use the Avogadro's law as:-
Given ,
V₂ is twice the volume of V₁
V₂ = 2V₁
n₁ = ?
n₂ = 1.55625 mol
Using above equation as:
n₁ = 0.778125 moles
Moles of carbon dioxide = 0.778125 moles
Molar mass of
= 44.0 g/mol
Mass of
= Moles × Molar mass = 0.778125 × 44.0 g = 34.2 g
<u>34.2 g is the mass of carbon dioxide gas one have in the container.</u>