Answer:
Option "B" is correct.
Explanation:
According to VSEPR theory, There are repulsion forces exists among the bond pair - bond pair or bond pair - lone pair of electrons. In
and
, the number of electron pairs are same but methane has all the four bond pairs where in ammonia, three bond pairs and one lone pair exists. And thus there are repulsion forces possible in between the lone pair and bond pair of electrons thus the arrangement of electron pairs around both the molecules is same or different depending up on the conditions leading to maximum repulsion.
Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Answer:
Explanation:
25.8 ml of .095 N NaOH is needed to neutralise the remaining acid
equivalent of NaOH used = 25.8 x .095 / 1000 = .002451 gm equivalent .
acid remaining = .002451 gm equivalent .
acid initially taken = 100 ml of .1 N / 1000 = . 01 gm equivalent
acid reacted with metal = .01 -.002451 = .007549 gm equivalent
This must have reacted with same gram equivalent of metal oxide
.007549 gm equivalent = .15 gm of metal oxide
1 gm equivalent = 19.87 gm
equivalent weight of metal = 19.87 - equivalent weight of oxygen
= 19.87 - 8 = 11.87 .
1
High tides and low tides are caused by the moon. The moon's gravitational pull generates something called the tidal force. The tidal force causes Earth—and its water—to bulge out on the side closest to the moon and the side farthest from the moon. These bulges of water are high tides.
<span>The extracellular fluid is high in NaCl so the cell would be dehydrated further and the two solutions would equilibrate. Ultimately water would leave the cell and passes to </span>extracellular fluid and equilibrium is reached.