Answer:
The correct answer is B. Since the two metals have the same mass, but the specific heat capacity of iron is much greater than that of gold, the final temperature of the two metals will be closer to 498 K than to 298 K
Explanation:
Iron is hotter and gold is colder, therefore, according to laws of thermodynamics, iron will lose heat to gold until they are at the same temperature.
The specific heat capacity of iron(0.449) is over three times that of gold(0.128). Since masses are equal, this means that each time iron's temperature drops by one degree, the energy released it releases makes gold's temperature increase by more than 3 degrees. So gold's temperature will be climbing much faster than iron's is falling. Meaning they will meet closer to the initial temperature of iron than that of gold
Answer:
Mass = 5.33 g
Explanation:
Given data:
Mass of Al = 2.80 g
Mass of Cl₂ = 4.15 g
Theoretical yield of AlCl₃ = ?
Solution:
Chemical equation:
2Al + 3Cl₂ → 2AlCl₃
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 2.80 g/ 27 g/mol
Number of moles = 0.10 mol
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 4.15 g/71 g/mol
Number of moles = 0.06 mol
Now we will compare the moles of AlCl₃ with Al and Cl₂.
Cl₂ : AlCl₃
3 : 2
0.06 : 2/3×0.06 = 0.04
Al : AlCl₃
2 : 2
0.10 : 0.10
Number of moles of AlCl₃ produced by chlorine are less so it will be limiting reactant.
Mass of AlCl₃:Theoretical yield
Mass = number of moles ×molar mass
Mass = 0.04 mol × 133.34 g/mol
Mass = 5.33 g
Answer:
Zirconium tetrafluoride has 4 atoms of flourine and 1 atom of Zirconium
It is advisable to wear long sleeve when when a student is working in a chemistry lab so that to protect arms from lab chemicals. when someone enter the chemistry lab to wort or to study should be well prepared with appropriate gears and security measure to avoid injury.
<span>biological reactions that happen within cells while reducing the complex interactions found in a whole cell. Eukaryotic and prokaryotic cells have been used for creation of these simplified environments[1]. Subcellular fractions can be isolated by ultracentrifugation to provide molecular machinery that can be used in reactions in the absence of many of the other cellular components.
Cell-free biosystems can be prepared by mixing a number of purified enzymes and coenzymes. Cell-free biosystems are proposed as a new low-cost biomanufacturing platform compared to microbial fermentation used for thousands of years. Cell-free biosystems have several advantages suitable in industrial applications</span>