answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ostrovityanka [42]
2 years ago
7

Combustion analysis of a 13.42-g sample of the unknown organic compound (which contains only carbon, hydrogen, and oxygen) produ

ced 39.01 g CO2 and
10.65 g H2O. The molar mass of the unknown compound is 272.38 g/mol.
Find the molecular formula of the unknown compound.
Chemistry
1 answer:
Kisachek [45]2 years ago
6 0

<u>Answer:</u> The empirical and molecular formula for the given organic compound is C_9H_{12}O and C_{18}H_{24}O_2

<u>Explanation:</u>

The chemical equation for the combustion of hydrocarbon having carbon, hydrogen and oxygen follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of Carbon, hydrogen and oxygen respectively.

We are given:

Mass of CO_2=39.01g

Mass of H_2O=10.65g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

<u>For calculating the mass of carbon:</u>

In 44 g of carbon dioxide, 12 g of carbon is contained.

So, in 39.01 g of carbon dioxide, \frac{12}{44}\times 39.01=10.64g of carbon will be contained.

<u>For calculating the mass of hydrogen:</u>

In 18 g of water, 2 g of hydrogen is contained.

So, in 10.65 g of water, \frac{2}{18}\times 10.65=1.18g of hydrogen will be contained.

Mass of oxygen in the compound = (13.42) - (10.64 + 1.18) = 1.6 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{10.64g}{12g/mole}=0.886moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{1.18g}{1g/mole}=1.18moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{1.6g}{16g/mole}=0.1moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.1 moles.

For Carbon = \frac{0.886}{0.1}=8.86\approx 9

For Hydrogen = \frac{1.18}{0.1}=11.8\approx 12

For Oxygen = \frac{0.1}{0.1}=1.99\approx 2

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 9 : 12 : 1

The empirical formula for the given compound is C_9H_{12}O

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is :

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 272.38 g/mol

Mass of empirical formula = 136 g/mol

Putting values in above equation, we get:

n=\frac{272.38g/mol}{136g/mol}=2

Multiplying this valency by the subscript of every element of empirical formula, we get:

C_{(2\times 9)}H_{(2\times 12)}O_{(2\times 1)}=C_{18}H_{24}O_2

Hence, the empirical and molecular formula for the given organic compound is C_9H_{12}O and C_{18}H_{24}O_2

You might be interested in
Calculate the wavelength of the photon emitted when an electron makes a transition from n=6 to n=3. You can make use of the foll
Angelina_Jolie [31]

<u>Answer:</u> The wavelength of light is 1.094\times 10^{-6}m

<u>Explanation:</u>

To calculate the wavelength of light, we use Rydberg's Equation:

\frac{1}{\lambda}=R_H\left(\frac{1}{n_f^2}-\frac{1}{n_i^2} \right )

Where,

\lambda = Wavelength of radiation

R_H = Rydberg's Constant  = 1.097\times 10^7m^{-1}

n_f = Final energy level = 3

n_i = Initial energy level = 6

Putting the values in above equation, we get:

\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{3^2}-\frac{1}{6^2} \right )\\\\\lambda =\frac{1}{914617m^{-1}}=1.094\times 10^{-6}m

Hence, the wavelength of light is 1.094\times 10^{-6}m

6 0
2 years ago
Which of the following cooking materials does NOT conduct heat?
kherson [118]
Can be produced from a variety of material, including , it’s at a C or D.
3 0
2 years ago
Read 2 more answers
What element is being oxidized in the following redox reaction?
gregori [183]

Answer:

C is the element thats has been oxidized.

Explanation:

MnO₄⁻ (aq)  +  H₂C₂O₄ (aq)  →  Mn²⁺ (aq)  +  CO₂(g)

This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.

In the oxalic acid, this are the oxidation states:

H: +1

C: +3

O: -2

In the product side, in CO₂ the oxidation states are:

C: +4

O: -2

Carbon from the oxalate has increased the oxidation state, so it has been oxidized.

4 0
2 years ago
Given equilibrium partial pressures of PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm calculate the equilibrium constant
maxonik [38]
Answer 1:
Equilibrium constant (K) mathematically expressed as the ratio of the concentration of products to concentration of reactant. In case of gaseous system, partial pressure is used, instead to concentration.

In present case, following reaction is involved:

                        2NO2    ↔      2NO + O2

Here, K = \frac{[PNO]^2[O2]}{[PNO2]^2}

Given: At equilibrium, <span>PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm
</span>
Hence,  K = \frac{[0.0022]^2[0.0011]}{[0.247]^2}
                 = 8.727 X 10^-8

Thus, equilibrium constant of reaction = 8.727 X 10^-8
.......................................................................................................................

Answer 2:
Given: <span>PNO2= 0.192 atm, PNO = 0.021 atm, and PO2 = 0.037 atm.

Therefore, Reaction quotient = </span>\frac{[PNO]^2[O2]}{[PNO2]^2}
                                              = \frac{[0.021]^2[0.037]}{[0.192]^2}
                                              = 4.426 X 10^-4.

Here, Reaction quotient > Equilibrium constant.

Hence, <span>the reaction need to go to reverse direction to reattain equilibrium </span>
5 0
2 years ago
Read 2 more answers
Which statement is TRUE regarding the macroscopic and
damaskus [11]

Answer:

Chemists make observations on the macroscopic a scale that lead to conclusions about microscopic features

Explanation:

Many important chemical observations are made on the macroscopic scale. This is because, many of the scientific equipments available are not presently able to provide direct evidence about microscopic processes. Evidences obtained from macroscopic observations could serve as important insights into the nature of certain microscopic processes.

This is evident in the study of the structure of the atom. Most of the evidences that led to the deduction of the atomic structure were obtained from macroscopic evidence but ultimately provided important information about the microscopic structure of the atom.

7 0
2 years ago
Other questions:
  • Rutherford, geiger, and marsden’s experiment demonstrated that the volume of the nucleus is roughly what fraction of the volume
    5·1 answer
  • A pharmacy technician measures the mass of a pill. the mass of one pill is 461 mg. what is the mass in kilograms of 100 pills? w
    13·2 answers
  • A solid sample of a compound and a liquid sample of the same compound are each tested for electrical conductivity. which test co
    10·1 answer
  • A 0.50 M solution of formic acid, HCOOH, has a pH of 2.02. Calculate the percent ionization of HCOOH
    15·2 answers
  • Which of the following statements is true?
    7·2 answers
  • What is the molarity of an h3po4 solution if 15.0 ml is completely neutralized by 38.5 ml of 0.150m naoh?
    9·2 answers
  • A car moves at a speed of 50 kilometers/hour. Its kinetic energy is 400 joules. If the same car moves at a speed of 100 kilomete
    10·1 answer
  • List the number of each type of atom on the left side of the equation 2C10H22(l)+31O2(g)→20CO2(g)+22H2O(g)
    14·1 answer
  • Complete the reaction, which is part of the electron transport chain. The abbreviation FMN represents flavin mononucleotide. Use
    11·1 answer
  • Calculate the mass of magnesium needed to make 25g of magnesium oxide​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!