Answer:
The correct answer is B. Since the two metals have the same mass, but the specific heat capacity of iron is much greater than that of gold, the final temperature of the two metals will be closer to 498 K than to 298 K
Explanation:
Iron is hotter and gold is colder, therefore, according to laws of thermodynamics, iron will lose heat to gold until they are at the same temperature.
The specific heat capacity of iron(0.449) is over three times that of gold(0.128). Since masses are equal, this means that each time iron's temperature drops by one degree, the energy released it releases makes gold's temperature increase by more than 3 degrees. So gold's temperature will be climbing much faster than iron's is falling. Meaning they will meet closer to the initial temperature of iron than that of gold
Answer:
GP.E = 5880 j
Explanation:
Given data:
Mass = 75 kg
height = 8 m
Potential energy = ?
Solution:
The formula for gravitational potential energy is
GPE = mgh
m = mass in kilogram
g = acceleration due to gravity
h = height in meter above the ground
Formula:
GP.E = mgh
Now we will put the values in formula.
g = 9.8 m/s²
GP.E = 75 Kg × 9.8 m/s²× 8 m
GP.E = 5880 Kg.m²/s²
Kg.m²/s² = j
GP.E = 5880 j
Answer:
324.18 g/mol
Explanation:
Let the molecular mass of the antimalarial drug, Quinine is x g/mol
According to question,
Nitrogen present in the drug is 8.63% of x
So, mass of nitrogen = 
Also, according to the question,
2 atoms are present in 1 molecule of the drug.
Mass of nitrogen = 14.01 amu = 14.01 g/mol (grams for 1 mole)
So, mass of nitrogen = 14.01×2 = 28.02
These 2 must be equal so,

solving for x, we get:
<u>x = 324.18 g/mol</u>
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
Full Question:
A flask containing 420 Ml of 0.450 M HBr was accidentally knocked to the floor.?
How many grams of K2CO3 would you need to put on the spill to neutralize the acid according to the following equation?
2HBr(aq)+K2CO3(aq) ---> 2KBr(aq) + CO1(g) + H2O(l)
Answer:
13.1 g K2CO3 required to neutralize spill
Explanation:
2HBr(aq) + K2CO3(aq) → 2KBr(aq) + CO2(g) + H2O(l)
Number of moles = Volume * Molar Concentration
moles HBr= 0.42L x .45 M= 0.189 moles HBr
From the stoichiometry of the reaction;
1 mole of K2CO3 reacts with 2 moles of HBr
1 mole = 2 mole
x mole = 0.189
x = 0.189 / 2 = 0.0945 moles
Mass = Number of moles * Molar mass
Mass = 0.0945 * 138.21 = 13.1 g