Explanation:
Soaps attach to both water and grease molecules.
The grease molecules are attracted more strongly towards each other as compared to water molecules. Also, water molecules are smaller in size hence, strong intermolecular force is required to break the hydrogen bonds of water molecule so that grease or oil molecules can enter the water molecule.
A soap molecule goes in between water and grease molecule and helps them to bind. The force for linkage between water and grease molecule through the soap molecule is weak london dispersion force.
The soap molecule has its salt end as ionic and water soluble. When grease or oil is added to the soap and water solution then the soap acts as an emulsifier. The soap forms miscelles of the non-polar tails and grease molecules are trapped between these miscelles. This miscelle is easily soluble in water hence, the grease is washed away.
Thus, it can be concluded that the nonpolar end of a soap molecule attaches itself to grease.
Answer:
Explanation:
Oxidation no is equal to charge on each atomic ion. If it is increased , element is oxidised and if it is decreased , element is reduced .
2AgCl+Zn⟶2Ag+ZnCl2
Zinc is oxidised , Ag is reduced .
Ag⁺ converts to Ag . ( oxidation number is reduced ) so Ag is reduced.
Zn converts to Zn⁺² ( oxidation number is increased ) so Zn is oxidised .
4NH₃+3O₂⟶2N₂+6H₂O
oxidation number of nitrogen in ammonia is - 3
oxidation no of nitrogen in nitrogen is zero.
Oxidation no of nitrogen is increased so it is oxidised.
oxidation no of oxygen is zero in oxygen and its oxidation no in water is -2 . So oxidation no is reduced so oxidation is reduced.
Fe₂O₃+2Al⟶Al₂O₃+2Fe
oxidation no of Fe in Fe₂O₃ is + 3 and it is zero in Fe so iron is reduced.
oxidation no of Al in Al is zero and it is +3 in Al₂O₃ so it is oxidised .
Answer:
Mass of Ca in sample, Mass of Br in sample, Number of moles of Ca in sample, Number of moles of Br in sample, Mass or moles of element other than Ca or Br in sample
Explanation:
The AP Classroom will not count your answer to this question as correct unless it includes at least one of the answers listed above. If you say that theanswer to this question is density, it will be marked as incorrect, I found that out the hard way when I used the answers that brainly gave me.
Good luck,
I applaud you for using the sources avalible to you, which is /definetly not/ cheeting.
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
c₁=2.00 mol/L
v₁=0.25 L
v₂=2.00 L
c₂-?
n(NaOH)=c₂v₂
n(H₂SO₄)=c₁v₁
n(NaOH)=2n(H₂SO₄)
c₂v₂=2c₁v₁
c₂=2c₁v₁/v₂
c₂=2*2.00*0.25/2.00=0.5 mol/L
0.5 M NaOH
Q1)
the number of moles can be calculated as follows
number of moles = mass present / molar mass
number of moles is the amount of substance.
4.8 g of Ca was added therefore mass present of Ca is 4.8 g
molar mass of Ca is 40 g/mol
molar mass is the mass of 1 mol of Ca
therefore if we substitute these values in the equation
number of moles of Ca = 4.8 g / 40 g/mol = 0.12 mol
0.12 mol of Ca is present
q2)
next we are asked to calculate the number of moles of water present
again we can use the same equation to find the number of moles of water
number of moles = mass present / molar mass
3.6 g of water is present
sum of the products of the molar masses of the individual elements by the number of atoms
H - 1 g/mol and O - 16 g/mol
molar mass of water = (1 g/mol x 2 ) + 16 g/mol = 18 g/mol
molar mass of H₂O is 18 g/mol
therefore number of moles of water = 3.6 g / 18 g/mol = 0.2 mol
0.2 mol of water is present