Answer:
Option B
Explanation:
We will check the solubility graph for potassium nitrate, KNO
3. Based on the graph it can be said that the temperature of solution when 130 grams of KNO3 dissolves in 100 grams of water is near to 65 degree Celsius. Now if three grams of solute is increased then the temperature of the solution will increase by a degree or so and hence the most probable temperature would be 68 degree Celsius.
Hence, option B is correct
Answer:
The adjustable legs and the table of sand.
<em>Note:The question is incomplete. The complete question is given below.</em>
Using Models to Answer Questions About Systems
Armando’s class was looking at images of rivers formed by flowing water. Most of the rivers were wide and shallow, but one river was narrow and deep. Armando’s class thinks that this river is narrow and deep because:
- the hill that the water flowed down was very steep, or
- the sand grains that the water flowed through were very small.
Armando designed the model below to try to answer the question: Why is this river so narrow and deep?
Explanation:
The model designed by Armando will be helpful to answer the question because of the following features it possesses:
1. An adjustable leg- since one of the hypotheses put forward by the class to explain why the river was narrow and deep was that the hill that the water flowed down was very steep, the adjustable legs can be lowered or raised in order to make the slope shallower or steeper so that their hypothesis can be tested.
2. A table of sand- the table of sand serves as the streambed. By adjusting the size of the sand grains to be larger or smaller, the students will be able to to test their second hypothesis that the small size sand grains that the water flowed through was the reason for the river to be narrow and deep.
The results of their experiments will enable them to come to a conclusion.
Answer:
If the angle of insolation is higher, then the temperature of the soil will be higher because it will receive more direct light.
Explanation:
The total energy in a system due to the temperature and pressure per unit mass in that system is known as specific enthalpy. It is used in thermodynamic equations when one desires to know the energy for a given single unit mass of a component.
Specific enthalpy is calculated by the equation:
H = U + PV
in the given case, Specific volume = 4.684 cm³/g = 149.888 cm³/g moles = 149.888 × 10⁻³ J/g moles
Specific internal energy (U) is 1706 J/mol and pressure is 41.64.
H = 1706 + 41.64 × 149.888 × 10⁻³ × 101.3 joules
= 2428 joules / mole
Answer: Option (d) is the correct answer.
Explanation:
The given data is as follows.
Tube diameter d = 10 mm = 0.01 m
Velocity of glycerol, v = 0.5 m/s
Density of glycerol (
) = 1240 kg/m3
Dynamic viscosity of glycerol (
) = 0.0813 pa.s
Reynolds number (Re) =
=
= 76.26
Therefore, according to Reynolds number we can say that flow is laminar.
Lt =
=
=
As it is known that 1 m = 1000 mm. Hence, in 0.03813 m will be equal to 
= 38.13 mm
Thus, we can conclude that the transition length of glycerol is 38.13 mm.