Answer:
Explanation:
1.)azeotrope is a mixture of two or more liquid components under constant boiling, it has a constant mole fraction composition of present component which can be homogeneous or heterogeneous.
2.)the condition which it's best performed when there's liquids that is non-volatile which boils higher than other liquids with at least 26 degrees .
steam azentropic distillation
3.During a steam distillation, How to know if the organic compound is still coming over is when you see the solution becoming cloudy or when there is existence of two layers.
4.)The end of the steam distillation, the receiving flask should contain two layers of liquid, and the chemical identity of these two liquids most contain
A.) Layers that are mostly water H2O
B.) Layers that are mostly products
5.)What is the purpose of adding 10% sodium carbonate solution to the distillate if it is acidic to litmus is to neutralize the distillate.
Answer:
0.12693 mg/L
Explanation:
First we <u>calculate the concentration of compound X in the standard prior to dilution</u>:
- 10.751 mg / 100 mL = 0.10751 mg/mL
Then we <u>calculate the concentration of compound X in the standard after dilution</u>:
- 0.10751 mg/mL * 5 mL / 25 mL = 0.021502 mg/L
Now we calculate the<u> concentration of compound X in the sample</u>, using the <em>known concentration of standard and the given areas</em>:
- 2582 * 0.021502 mg/L ÷ 4374 = 0.012693 mg/L
Finally we <u>calculate the concentration of X in the sample prior to dilution</u>:
- 0.012693 mg/L * 50 mL / 5 mL = 0.12693 mg/L
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.
Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
Correct Question :
Mass of water = 50.003g
Temperature of water= 24.95C
Specific heat capacity for water = 4.184J/g C
Mass of metal = 63.546 g
Temperature of metal 99.95°C
Specific heat capacity for metal ?
Final temperature = 32.80°C
In an experiment to determine the specific heat of a metal student transferred a sample of the metal that was heated in boiling water into room temperature water in an insulated cup. The student recorded the temperature of the water after thermal equilibrium was reached. The data we shown in the table above. Based on the data, what is the calculated heat absorbed by the water reported with the appropriate number of significant figures?
Answer:
1642 J
Explanation:
Given:
Mass of water = 50.003g
Temperature of water= 24.95C
Specific heat capacity for water = 4.184J/g C
Mass of metal = 63.546 g
Temperature of metal 99.95°C
Specific heat capacity for metal ?
Final temperature = 32.80° C
To calculate the heat absorbed by water, Q, let's use the formula :
Q = ∆T * mass of water * specific heat
Where ∆T = 32.80°C - 24.95°C = 7.85°C
Therefore,
Q= 7.85 * 50.003 * 4.184
Q = 1642.32 J
≈ 1642 J