Absorbance is related to the concentration of a substance using the Beer-Lambert's Law. According to this law, absorbance is linearly related to concentration. However, this is only true up to a certain concentration depending on the substance. For this case, we assume that the said law is applicable.
A = kC
Using the first conditions, ewe solve for k.
0.26 = k (0.10)
k = 2.6
A = kC
A = 2.6 (0.20) = 0.52
Therefore, the absorbance at a concentration of 0.20 M and wavelength of 500nm is 0.52.
Answer:
The true statements are:
The solution is acidic
The pH of the solution is 14.00 - 10.53.
![10^{-10.53}=[OH^-]](https://tex.z-dn.net/?f=10%5E%7B-10.53%7D%3D%5BOH%5E-%5D)
Explanation:
The pH of the solution is defined as negative logarithm of hydrogen ion concentration present in the solution .
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
- The pH value more 7 means that hydrogen ion concentration is less ,alkaline will be the solution.
- The pH value less 7 means that hydrogen ion concentration is more ,acidic will be the solution.
- The pH value equal to 7 indicates that the solution is neutral.
The pOH of the solution is defined as negative logarithm of hydroxide ion concentration present in the solution .
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
The pOH of the solution = 10.53
![10.53=-\log[OH^-]](https://tex.z-dn.net/?f=10.53%3D-%5Clog%5BOH%5E-%5D)
![10^{-10.53}=[OH^-]](https://tex.z-dn.net/?f=10%5E%7B-10.53%7D%3D%5BOH%5E-%5D)
The pH of the solution = ?


Here, the pH of the solution is less than 7 which means that solution acidic.
Answer:
748 torr
Explanation:
mmHg and torr are equivalent so, you'll have 748 torr.
<u>Answer:</u> The element represented by M is Strontium.
<u>Explanation:</u>
Let us consider the molar mass of metal be 'x'.
The molar mass of MO will be = Molar mass of oxygen + Molar mass of metal = (16 + x)g/mol
It is given in the question that 15.44% of oxygen is present in metal oxide. So, the equation becomes:

The metal atom having molar mass as 87.62/mol is Strontium.
Hence, the element represented by M is Strontium.