Answer:
D. The atoms are arranged with alternating positive and negative charges. When struck, the lattice shifts putting positives against positives and negatives against negatives.
Explanation:
Metallic crystals takes their properties as a result of metallic bonds in between the atoms.
Metallic bond is actually the attraction between the positive nuclei of all the closely packed atoms in the lattice and the electron cloud jointly formed by all the atoms by losing their outermost shell electrons this is by virtue of their low ionization energy.
Physical properties of metals such as malleability, ductility, electrical conductivity, etc can be accounted for by metallic bonds.
Answer:
1.98 M
Explanation:
Given data
- Initial volume (V₁): 93.2 mL
- Initial concentration (C₁): 2.03 M
- Volume of water added: 3.92 L
Step 1: Convert V₁ to liters
We will use the relationship 1 L = 1000 mL.

Step 2: Calculate the final volume (V₂)
The final volume is the sum of the initial volume and the volume of water.

Step 3: Calculate the final concentration (C₂)
We will use the dilution rule.

Answer:
V₂ = 15.6 L
Explanation:
Given data:
Initial volume = 175 mL (0.175 L)
Initial pressure = 1 atm
Initial temperature = 273 K
Final temperature = -5°C (-5+273 = 268 K)
Final volume = ?
Final pressure = 1.16 kpa (1.16/101=0.011 atm)
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1 atm × 0.175 L × 268 K / 273 K × 0.011 atm
V₂ = 46.9 L / 3.003
V₂ = 15.6 L
I first converted the given grams of the reactants into moles, and then divided the moles by the coefficients in front of each of the reactant. The result with the smallest value will be the limiting reactant, and the value of CuO was the smallest, so it's the limiting reactant.
After figuring out which reactant is the limiting one, I took their given grams and converted it into moles, the divided it by the ratio of N2 to CuO (it's in the equation) to obtain the moles of N2, and then multiply it with the molar mass of N2 to get its mass in grams.
Protons and neutrons are the sub-atomic particles present in the nucleus of an atom where as electrons are present revolving round the nucleus in orbits. Electrons are negatively charged, protons are positively charged where as a neutron is a neutral species. It is the presence of electric charge that lead to the discovery of electrons (negative charge) and protons (positive charge), while it took time to discover neutral as they were electrically neutral species. Neutrons carrying no charge were not detected easily by passing electromagnetic radiations. Therefore, neutrons were the last of the three subatomic particles, to be discovered.