Answer:
The concentration is 0,2925M
Explanation:
We use the formula
C initial x V initial = C final x V final
11,7 M x 25 ml = C final x 1000 ml
C final= (11,7 M x 25 ml)/1000 ml = 0, 2925 M
(This formula applies to liquid solutions)
Answer:
17.57kg of
and its percentage yield is 81.0%
Explanation:
Through the reaction you can get the theoretical amount of
that must be produced.

If the amount obtained is less than the theoretical amount, it means that the initial sample was not 100% pure. Now the actual amount obtained is compared with the theoretical amount using a percentage
=81.0%
solution:
Weight of caffeine is W = 0.170 gm.
Volume of water is V= 10 ml
Volume of methylene chloride which extracted caffeine is v= 5ml
No of portions n=3
Distribution co-efficient= 4.6
Total amount of caffeine that can be unextracted is given by
![w_{n}=w\times[\frac{k_{Dx}v}{k_{Dx}v+v}]^n\\w_{3}=0.170[\frac{4.6\times10}{(4.6\times10+5)}]^3\\=0.170[\frac{46}{46+5}]^3\\=0.170[\frac{46}{51}]^3\\=0.170[\frac{97336}{132651}]\\=0.170\times0.734=0.125gms](https://tex.z-dn.net/?f=w_%7Bn%7D%3Dw%5Ctimes%5B%5Cfrac%7Bk_%7BDx%7Dv%7D%7Bk_%7BDx%7Dv%2Bv%7D%5D%5En%5C%5C%3C%2Fp%3E%3Cp%3Ew_%7B3%7D%3D0.170%5B%5Cfrac%7B4.6%5Ctimes10%7D%7B%284.6%5Ctimes10%2B5%29%7D%5D%5E3%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5B%5Cfrac%7B46%7D%7B46%2B5%7D%5D%5E3%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5B%5Cfrac%7B46%7D%7B51%7D%5D%5E3%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5B%5Cfrac%7B97336%7D%7B132651%7D%5D%5C%5C%3C%2Fp%3E%3Cp%3E%3D0.170%5Ctimes0.734%3D0.125gms)
amount of caffeine un extracted is 0.125gms
amount of caffeine extracted=0.170-0.125
=0.045 gms
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1
Answer: <span>9330 j/mol
</span>
The temperature of the gas is 475 ° Celcius which is equal to: 475 +273= 748 °K. The formula for kinetic energy of individual atoms would be
K= 3/2 * kB * T
If kB is 1.38 * 10^-23 J/K and 1 mol is made from 6.02*10^23 molecule, then the kinetic energy of 1 mol CO2 would be:
K= 3/2 * kB * T
K= 3/2 * 1.38 * 10^-23 * 748 * 6.02 *10^23 =9324 J/mol