answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
2 years ago
12

An experiment requires that each student use an 8.5 cm length of magnesium ribbon. How many students can do the experiment if th

ere is a 570 cm length of magnesium ribbon available?
Chemistry
2 answers:
melisa1 [442]2 years ago
7 0
570/8.5=67.0 58... you only have to take the natural part, si the answer is 67 students
BlackZzzverrR [31]2 years ago
5 0

In the particular experiment, each student uses 8.5 cm of ribbon.

The total length of the Mg ribbon present is 570 cm

so to find how many students can use the ribbon

number of students = total length of the ribbon / length each student uses

number of students = 570 cm / 8.5 cm/student = 67. 1 students

since it should be a whole number it should be 67

therefore 67 students can use the ribbon

You might be interested in
At 10°c one volume of water dissolves 3.10 volumes of chlorine gas at 1.00 atm pressure. what is the henry's law constant of cl2
s344n2d4d5 [400]
Answer is:  0,133 mol/ l· atm.
T(chlorine) = 10°C = 283K.
p(chlorine) = 1 atm.
V(chlorine) = 3,10 l.
R - gas constant, R = 0.0821 atm·l/mol·K. 
Ideal gas law: p·V = n·R·T
n(chlorine) = p·V ÷ R·T.
n(chlorine) = 1atm · 3,10l ÷ 0,0821 atm·l/mol·K · 283K = 0,133mol.
Henry's law: c = p·k.
k - <span>Henry's law constant.
</span>c - solubility of a gas at a fixed temperature in a particular solvent.
c = 0,133 mol/l.
k = 0,133 mol/l ÷ 1 atm = 0,133 mol/ l· atm.

4 0
2 years ago
A 0.25 m solution of the sugar sucrose (c12h22o11) in water is tested for conductivity using the type of apparatus shown. Bulb w
Anvisha [2.4K]

Sucrose is a non ionic compound. It does liberates ion when dissolved in water unlike NaCl or other salts which dissolve in water and produce respective cations and anions.

Thus if any amount of sucrose is dissolved in water, it will form non ionic aqueous solution (it will dissolve completely). Thus sucrose solution being non electrolytic will not conduct electricity in aqueous solution.

the bulb will not light up as sucrose will remain in molecular form only

6 0
2 years ago
Olympic cyclist fill their tires with helium to make them lighter. Calculate the mass of air in an air filled tire and the mass
inn [45]

<u>Answer:</u> The mass difference between the two is 7.38 grams.

<u>Explanation:</u>

To calculate the number of moles, we use the equation given by ideal gas follows:

PV=nRT

where,

P = pressure = 125 psi = 8.50 atm    (Conversion factor:  1 atm = 14.7 psi)

V = Volume = 855 mL = 0.855 L    (Conversion factor:  1 L = 1000 mL)

T = Temperature = 25^oC=[25+273]K=298K

R = Gas constant = 0.0821\text{ L. atm }mol^{-1}K^{-1}

n = number of moles = ?

Putting values in above equation, we get:

8.50atm\times 0.855L=n\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\n=\frac{8.50\times 0.855}{0.0821\times 298}=0.297mol

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}      .....(1)

  • <u>For air:</u>

Moles of air = 0.297 moles

Average molar mass of air = 28.8 g/mol

Putting values in equation 1, we get:

0.297mol=\frac{\text{Mass of air}}{28.8g/mol}\\\\\text{Mass of air}=(0.297mol\times 28.8g/mol)=8.56g

Mass of air, m_1 = 8.56 g

  • <u>For helium gas:</u>

Moles of helium = 0.297 moles

Molar mass of helium = 4 g/mol

Putting values in equation 1, we get:

0.297mol=\frac{\text{Mass of helium}}{4g/mol}\\\\\text{Mass of helium}=(0.297mol\times 4g/mol)=1.18g

Mass of helium, m_2 = 1.18 g

Calculating the mass difference between the two:

\Delta m=m_1-m_2

\Delta m=(8.56-1.18)g=7.38g

Hence, the mass difference between the two is 7.38 grams.

5 0
2 years ago
One mole of an ideal gas in a closed system, initially at 25°C and 10 bar, is first expanded adiabatically, then heated isochori
Igoryamba

Answer:

P_2=0.398bar=39800Pa

T_2=118.7K\\

Q=-3729.9J

W=-61753.24J

ΔU_T=0J

ΔH_T=0J

Explanation:

Hello,

At the first state, the molar volume is:

v_1=\frac{RT}{P_1} =\frac{8.314\frac{Pa*m^3}{molK}*298.15}{1x10^6Pa}=2.48x10^{-3}m^3

The volume in both the second and third state:

v_2=v_3=\frac{RT}{P_1} =\frac{8.314\frac{Pa*m^3}{molK}*298.15}{1x10^5Pa}=2.48x10^{-2}m^3

Now, as it is about an adiabatic process, one remembers the following relationships:

PV^\alpha =K\\TV^{\alpha-1}\\\alpha=\frac{Cp}{Cv}=\frac{7/2R}{5/2R}=1.4

- Next, for the aforesaid volumes and the first pressure, one computes the second pressure as:

P_2=\frac{P_1V_1^\alpha }{V_2^\alpha} =\frac{10bar*(2.48x10^{-3}m^3)^{1.4}}{(2.48x10^{-2}m^3)^{1.4}} =0.398bar=39800Pa

- And the temperature:

T_2=\frac{T_1V_1^{\alpha-1}}{V_2^{\alpha-1}} =\frac{298.15K*(2.48x10^{-3}m^3)^{1.4-1}}{(2.48x10^{-2}m^3)^{1.4-1}} =118.7K\\

- Q:

It is clear that the heat for the first process is 0 as it is adiabatic, but for the second one, it is computed as:

Q_2=nCv(T_2-T_1)=1mol*\frac{5}{2}(8.314\frac{J}{mol*K})*(118.7K-298.15K)=-3729.9J

Then the total heat:

Q=Q_1+Q_2=0-3729.9J=-3729.9J

- The work for the first process is:

W_1=\frac{P_2V_2-P_1V_1}{1-\alpha }=\frac{39800Pa*2.48x10^{-3}m^3-1x10^6Pa*2.48x10^{-2}m^3}{0.4} \\W_1=-61753.24J

It is clear that the second process is isochoric, so the work here is zero, thus, the total work is:

W=W_1+W_2=-61753.24J+0J=-61753.24J

- For the two processes, ΔU becomes the same value since the system returns to the initial temperature, so ΔU total is 0, thus, for each process, one's got:

U_1=nCv(T_2-T_1)=1mol*\frac{5}{2}(8.314\frac{J}{mol*K})*(118.7K-298.15K)=-3729.9J\\U_2=nCv(T_3-T_2)=1mol*\frac{5}{2}(8.314\frac{J}{mol*K})*(298.15K-118.7K)=3729.9J\\

- Finally, the total enthapy is also 0 due to same aforesaid reason, thus, each enthalpy is:

H_1=nCp(T_2-T_1)=1mol*\frac{7}{2}(8.314\frac{J}{mol*K})*(118.7K-298.15K)=-5221.86J\\H_2=nCv(T_3-T_2)=1mol*\frac{7}{2}(8.314\frac{J}{mol*K})*(298.15K-118.7K)=5221.86J\\

Best regards.

8 0
2 years ago
A molecule of antifreeze, ethylene glycol, has the formula c2h4(oh)2. how many atoms are there in one molecule of antifreeze?
kifflom [539]
Answer is: there are ten atoms in one molecule of antifreeze.
One molecule of ethylene glycol (C₂H₄(OH)₂) has two carbon atoms, six hydrogen atoms (4 + 2 · 1) and two oxygen atoms (2 · 1). So there are:
2 + 6 + 2 = 10 atoms.
Ethylene glycol (C₂H₄(OH)₂) is an odorless, sweet-tasting, colorless viscous liquid.
5 0
2 years ago
Read 2 more answers
Other questions:
  • That's just the tip of the iceberg" is a popular expression you may have heard. It means that what you can see is only a small p
    5·2 answers
  • Why does iron not fit the pattern in column 7
    13·1 answer
  • Give the atomic symbol for an element that does not exist as a molecule or extended structure. that is, an element that exists o
    14·2 answers
  • A 6.50-g sample of copper metal at 25.0 °c is heated by the addition of 84.0 j of energy. the final temperature of the copper i
    11·1 answer
  • Draw the structure of (z)-3-methylhept-3-ene. be sure the stereochemistry is drawn clearly.
    7·1 answer
  • Name one manufactured device or natural phenomenon that emits electromagnetic radiation in each of the following wavelengths: ra
    5·1 answer
  • Solid aluminum metal and diatomic chlorine gas react spontaneously to form a solid product. Give the balanced chemical equation
    14·1 answer
  • A certain element X has four isotopes. 4.350% of X has a mass of 49.94605 amu. 83.79% of X has a mass of 51.94051 amu. 9.500% of
    8·1 answer
  • Given the initial rate data for the reaction A + B –––&gt; C, determine the rate expression for the reaction.
    15·2 answers
  • Consider a saturated solution formed when 17.5 g of a solute dissolve in 28.3 g of a solvent, giving a total solution volume of
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!