Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
Answer is: mass of lithium fluoride is 3,732 grams.
m(solution) = 18,66 g.
ω(solution) = 20% = 20% ÷ 100% = 0,2.
m(LiF) = ?
ω(solution) = m(LiF) ÷ m(solution).
m(LiF) = ω(solution) · m(solution).
m(LiF) = 0,2 · 18,66 g.
m(LiF) = 3,732 g.
Answer:
P(total) = 1110 mmHg
Explanation:
According to the Dalton law of partial pressure,
The pressure exerted by mixture of gases are equal to the sum of partial pressure of individual gases.
P(total) = P1 + P2 + P3+ .....+ Pn
Given data:
Sample A = 740 mmHg
Sample B = 740 mmHg
Sample C = 740 mmHg
Total pressure = ?
Solution:
<em>Sample A:</em>
P₁V₁ = P₂V₂
P₂ = P₁V₁ / V₂
P₂ = 740 mmHg × 2L/4L
P₂ = 370 mmHg
<em>Sample B:</em>
P₁V₁ = P₂V₂
P₂ = P₁V₁ / V₂
P₂ = 740 mmHg × 2L/4L
P₂ = 370 mmHg
<em>Sample C:</em>
P₁V₁ = P₂V₂
P₂ = P₁V₁ / V₂
P₂ = 740 mmHg × 2L/4L
P₂ = 370 mmHg
Total pressure:
P(total) = P1 + P2 + P3
P(total) = 370 mmHg + 370 mmHg+ 370 mmHg
P(total) = 1110 mmHg
<span>Cu⁺ is the only one of the ions in the list that will show 8 electrons in a d sublevel....its configuration will be Ar| 4s² 3d⁸
hope this helps</span>
Answer:


Explanation:
Hello,
In this case, we can compute the mole fraction of benzene by using the following formula:

Whereas n accounts for the moles of each substance, thus, we compute them by using molar mass of benzene and cyclohexane:

Thus, we compute the mole fraction:

Next, for the molality, we define it as:

Whereas we also use the moles of benzene but rather than the moles of cyclohexane, its mass in kilograms (0.08074 kg), thus, we obtain:

Or just 0.990 m in molal units (mol/kg).
Best regards.