Answer : The cell emf for this cell is 0.118 V
Solution :
The half-cell reaction is:

In this case, the cathode and anode both are same. So,
is equal to zero.
Now we have to calculate the cell emf.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cl^{-}{diluted}]}{[Cl^{-}{concentrated}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCl%5E%7B-%7D%7Bdiluted%7D%5D%7D%7B%5BCl%5E%7B-%7D%7Bconcentrated%7D%5D%7D)
where,
n = number of electrons in oxidation-reduction reaction = 1
= ?
= 0.0222 M
= 2.22 M
Now put all the given values in the above equation, we get:


Therefore, the cell emf for this cell is 0.118 V
<u>Answer:</u> The element represented by M is Strontium.
<u>Explanation:</u>
Let us consider the molar mass of metal be 'x'.
The molar mass of MO will be = Molar mass of oxygen + Molar mass of metal = (16 + x)g/mol
It is given in the question that 15.44% of oxygen is present in metal oxide. So, the equation becomes:

The metal atom having molar mass as 87.62/mol is Strontium.
Hence, the element represented by M is Strontium.
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.
Attached to this answer is the format of Isotope Notation that you can use for future reference. <em>(Please open)</em>
There are
8 Protons. The Atomic Number is the same number of an element's proton.
If you can see in the format, the mass number is calculated by adding the atomic number/protons and neutrons.
Mass number = 8 + 11Mass number = 19The image of the final answer is attached as well.
Joseph Proust is the scientist who provided a foundation for John Dalton's work on the atomic structure.